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Missing data is a universal problem in the social sciences. Even randomized
lab experiments, which bypass many of the inferential problems we’ve focused
on in this course, may suffer from missing data. Missing data can itself pose
a threat to inference. We will conclude the semester by talking about these
problems and how best to deal with them.

Varieties of Missingness

What you should do with missing data depends on how the data went missing.
These definitions are drawn from Rubin (1976) and King et al. (2001).

Missing Completely at Random (MCAR). The probability of missingness does
not depend on the values of the data (observed or unobserved).

Under MCAR, the complete observations are in effect a random subsample of
the original sample. Any inferential procedure that would have been valid
with the full data will therefore still be valid on the subsample of complete
observations. The standard errors will of course be larger because there is less
data. We call this procedure—running what we wanted to run on the full data
on the subsample of observations with no missing data—listwise deletion or
complete-case analysis.

MCAR is not a plausible assumption for most missing data in political science.
In surveys, data are missing because respondents lack knowledge or deliber-
ately wish to conceal their answers—these do not occur completely at random.
Administrative data are missing when governmental entities lack the capacity
or willingness to collect them—again, not a chance process.

The MCAR assumption is testable: you can create a dummy variable for miss-
ingness, regress it on the data, and test the composite hypothesis that every
variable has zero effect.
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Missing at Random (MAR). The probability of missingness does not depend
on the missing values themselves. It is a function solely of the observed values.
In other words, if we could know the true value of the missing data, we would
not learn anything new about its likelihood of going missing.

For example, suppose high-income people are both more likely to be Republi-
cans and to conceal their party affiliation. As long as income is observed, MAR
holds. Our data might look like the following table.

Table 1. Illustration of MAR data.

income party

low D
low R
low D
high ?
high R
high ?

But if high-income people were also more likely to conceal their income, then
the data would no longer be MAR.

The MAR assumption differs from MCAR in two important ways. The first is
that, with MAR data, we cannot in general obtain valid inferences by listwise
deletion. In the special case of a linear model, though, OLS following listwise
deletion produces valid estimates if data are MAR (Little 1992). It is critical
that the model be properly specified; otherwise missing data may pose a serious
inferential threat (Winship and Radbill 1994).

The second difference from MCAR is that the MAR assumption is not testable.
It is a condition on unobservables, namely the values of the missing data. We
would need these values to test the MAR assumption, but then again if we had
them we wouldn’t have to worry about any of this in the first place.

MAR is a necessary condition for missingness to be ignorable. (The terminolog-
ical connection to strong ignorability in causal inference is not a coincidence.)
Ignorability means that we can draw valid inferences without knowing the
process that generates the missingness. That doesn’t mean we can pretend
missingness doesn’t exist—we have already seen that listwise deletion might
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produce invalid inferences—but that we need not model the exact process from
which it emerges.1

Nonignorable Missingness (NI). The probability of missingness depends on
the missing value itself.

NI is the worst-case scenario—though don’t take that to mean it’s uncommon.
To draw valid inferences with nonignorable missing data, we must either (1)
know the exact form of the missingness-generating process so that we can es-
timate a joint model of missingness and the outcome of interest or (2) settle
for robust but highly imprecise estimates. Door #1 requires techniques beyond
the scope of Stat II. We will briefly venture into door #2 at the end of class.

The figure illustrates hypothetical data with two correlated covariates, X1 and
X2, in which X2 is sometimes missing. We consider each of the three assump-
tions about the missingness process:

1. MCAR: The probability X2 is missing is constant across observations.
2. MAR: The probability X2 is missing is a function of X1.
3. NI: The probability X2 is missing is a function of X2.

Multiple Imputation

Even the “good” kinds of missing data, MCAR and MAR, create problems for us.
The most pertinent is inefficiency—inflated standard errors. Listwise deletion
eliminates every observation for which any covariate is missing. We don’t want
to throw away p − 1 perfectly good pieces of information just because one is
missing.

The most common way to deal with missing data in political science is mul-
tiple imputation (Schafer 1999, King et al. (2001)). If the data are MAR (or
MCAR), multiple imputation is a path to valid inference. The concept behind
multiple imputation is that, under MAR, we can predict the values of the miss-
ing observations from the other information in the dataset—imputation. These

1The other necessary condition for ignorability is a technical one: the parameters of the
process that generates missingness must be distinct from the parameters of the process that
generates the outcome of interest.
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Figure 1. Illustration of data that are complete, missing completely at random
(MCAR), missing at random (MAR), and nonignorably missing (NI).
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predictions won’t be perfect, though.2 To represent our uncertainty, we will
make multiple draws from the distribution of predictions.

Multiple imputation consists of the following steps.

1. Use the observed data to construct a model of the joint relationship
among the p+ 1 variables Y, X1, . . . , X p.

2. Form M “completed” datasets by drawing from the conditional distribu-
tion of the missing values given the observed data.

3. Run the statistical procedure you would have used if the data were fully
observed on each of the M imputed datasets.

4. Combine the estimates and standard errors from each imputation run to
come up with an overall estimate and standard error.

Parts 1 and 2 are the tricky ones, but there’s software to take care of that for
you.

Let us consider a toy example. Suppose we have the following data on Demo-
cratic primary vote choice for ten voters. We want to model vote choice as
a function of the voter’s gender and whether they do yoga. We have every
respondent’s gender, but yoga is missing for a single voter.

Table 2. Hypothetical vote choice data.

vote female yoga

Hillary 0 0
Bernie 0 1
Bernie 0 0
Bernie 0 0
Bernie 0 ?
Hillary 1 1
Hillary 1 0
Bernie 1 1
Hillary 1 1
Bernie 1 0

2We could only perfectly predict one variable as a linear combination of the others if they
were collinear, in which case the OLS estimator is ill-defined.
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MAR amounts to assuming that whether you report doing yoga depends only
on your gender, not on what the answer is. We’ll assume that moving forward.

Based on the other data available, we would probably guess that the missing
respondent doesn’t do yoga. Of the other men who responded, only 1/4 do
yoga. That goes up to 1/3 if we just look at men who responded and voted
for Bernie, but that’s still less than half. Nonetheless, we wouldn’t want to just
impute a 0 and move on. That implies a level of certainty we don’t have—
there’s some chance the guy does yoga!

Multiple imputation would consist of creating M datasets, each identical to the
original except that the missing value has been randomly drawn from the rele-
vant conditional distribution. Here, we condition on the missing respondent’s
gender and vote choice,3 drawing a 0 for yoga with probability 2/3 and a 1
with probability 1/3. With M = 5, for example, we might get the following
imputations.

Table 3. Imputed values for the observation with missing yoga.

imputation vote female yoga

1 Bernie 0 0
2 Bernie 0 0
3 Bernie 0 1
4 Bernie 0 1
5 Bernie 0 0

In real-world applications, we will have many more observations, covariates,
and missing values to deal with. Standard software implementations of multi-
ple imputation, including Amelia (King et al. 2001; Honaker and King 2010),
for tractability rely on the assumption that the joint distribution of the data is
multivariate normal. This means you must take care when your variables are
skewed, bimodal, dichotomous, ordinal, categorical, or otherwise not well-
described by a normal distribution. You may want to transform your data be-
fore imputing and then un-transform it thereafter. In any case, make sure to
read the documentation of whatever software you use and set the appropriate

3I personally feel a bit squeamish about including post-treatment and response variables in
imputation models. King et al. (2001) and Honaker and King (2010), who know more about
this than I do, claim that not only is it not a problem, but indeed it is best practices.
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options when imputing—the defaults may well produce misleading results.

Each imputation is a completely filled-in dataset. Once you have the impu-
tations in hand, you apply whatever estimator you would have used if you’d
had the full data. Let θ̂m denote the estimate from the m’th imputation (e.g.,
a regression coefficient), and let V̂m denote its estimated variance (squared
standard error). The combined parameter estimate is

θ̂ =
1
M

M
∑

m=1

θ̂m,

and the variance estimate is

V̂ =
1
M

M
∑

m=1

V̂m +
�

1+
1
M

�

�

1
M − 1

M
∑

m=1

(θ̂m − θ̂ )2
�

.

The variance estimate is a combination of the variance within imputations and
the variance between imputations. Our uncertainty about the imputed values
is an additional source of variation in the estimates that this formula accounts
for.

Standard practice is to use M = 5 or M = 10 (Schafer 1999; King et al. 2001).
Multiple imputation is computationally intensive, and additional imputations
beyond the tenth or so don’t reduce the standard errors enough to be worth
the computational cost.

Nonignorable Missing Outcomes

Nonignorable missingness is the biggest problem for inference when it occurs
in the response variable. In the context of the linear model,

Yi = x>i β + εi,

nonignorable missingness occurs when the probability of missingness is a func-
tion of the error term—the part of the response that our covariates don’t ac-
count for.

For example, suppose we want to estimate the relationship between living in
the South and holding racial stereotypes. We run a survey to collect data to
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run the regression

stereotypei = β0 + β1Southi + εi.

Suppose that Southerners are less likely to answer the question, regardless of
whether they hold stereotypes. In this case, the data are missing at random.
As long as some Southerners answer the question, we can use the observed
data to estimate the conditional expectations

E[stereotypei |Southi = 1], E[stereotypei |Southi = 0]

without bias. The difference between these will be an unbiased estimate of β1,
assuming the usual conditions hold (Little 1992).

On the other hand, suppose that people who hold stereotypes are less likely to
answer the question. Missingness would then be nonignorable, since the prob-
ability of missingness depends on the value of the potentially missing variable.
In this case, we cannot estimate the prevalence of stereotypes among South-
erners and non-Southerners without bias—the within-group sample means will
be underestimated, since stereotyped individuals conceal their answers. There-
fore, the difference of sample means will not in general be an unbiased estimate
of the population difference.

This sounds like a familiar problem . . . because it is. Recall the days of yore
when we spoke of causal inference. We wanted to estimate the average treat-
ment effect,

τ= E[τi] = E[Yi(1)− Yi(0)],

but we were stymied by the fact that we only observed one of the two potential
outcomes for each observation.

Following Manski (1990), suppose the potential outcomes are bounded below
by Y L and above by Y U . For example, with a binary response, Y L = 0 and
Y U = 1. The individual effect for a treated observation lies within the bounds

Yi − Y U

︸ ︷︷ ︸

τL
i

≤ τi ≤ Yi − Y L

︸ ︷︷ ︸

τH
i

.

Similarly, the individual effect for a control observation lies within

Y L − Yi
︸ ︷︷ ︸

τL
i

≤ τi ≤ Y U − Yi
︸ ︷︷ ︸

τH
i

.
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Without making any additional assumptions (e.g., about independence or con-
founders), we can place bounds on the sample average treatment effect:

1
N

N
∑

i=1

τL
i ≤

1
N

N
∑

i=1

τi ≤
1
N

N
∑

i=1

τH
i .

The resulting bounds will usually be wider than we would like them to be. In
particular, they will always contain zero. (We would need stronger assump-
tions to rule out the possibility that Yi(0) = Yi(1) for all i.) But they still tell us
something—they rule out some possibilities, without relying on any question-
able or untestable assumptions. They tell us how far the data alone can bring
us.

This illustrates one of the two general approaches to nonignorable missing
outcomes:

1. Nonparametric bounds analysis. The benefit of this approach is that it
does not depend on restrictive assumptions. The most obvious cost is that
you yield a range of possibilities instead of a single, specific estimate—
though I would argue that this is a benefit if it prevents unwarranted
confidence.

The other cost is sheer difficulty of implementation for anything more
complicated than differences of means. For example, the estimators pro-
posed by Manski and Tamer (2002) and Beresteanu and Molinari (2008)
for linear regression with interval-bounded missing outcomes are not at
all trivial to implement.

2. Directly modeling the process by which data go missing. This will give
you a point estimate, but it requires actually knowing the process by
which data go missing.

The most famous example is Heckman’s (1979) model of selection bias.
If there are unobserved variables that affect both the probability that the
outcome is unobserved and the value of the outcome itself, OLS estima-
tion of the outcome equation will be biased. Heckman derives a correc-
tion that entails running a first-stage regression to predict the probability
of missingness. It requires an exclusion restriction—we need a variable
that affects the probability of missingness but not the outcome itself. (If
this sounds a lot like instrumental variables, that’s because it is.)
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The second option is by far the most popular among political scientists, for
better or worse.
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