
Regression and Prediction
Brenton Kenkel — PSCI 8357
April 14, 2016

Today we are taking a bit of a left turn. Our goal, instead of testing hypotheses
or estimating causal effects, will simply be to predict the response as a function
of covariates.

The Problem of Overfitting

Imagine the following prediction problem. We are told to build a model of the
conditional expectation function E[Yi | x i] using the data available to us. After
we build the model, we will be presented with a random draw of the covariates
x i from the population, and we will use the model to predict the corresponding
value of Yi. This will be new, previously unobserved data—not part of the data
we used to build the model. The closer our prediction is to the actual value,
the greater our reward will be. How should we select a model to maximize our
reward?

The prediction problem is related to, but distinct from, what we have done
in most of this course. Up to now, our goal has been to estimate and test
hypotheses about parameters of the regression function. We have usually relied
on the linear model,

E[Yi | x i] = x>i β ,

and formulated hypotheses in terms of β . Getting β right, in terms of unbi-
asedness and consistency, has been a primary concern. In the prediction prob-
lem, however, we only care about getting β right insofar as it helps us get the
prediction right.

Even if we restrict ourselves to OLS, there are many ways to build a predictive
model from a given set of data. We might include all the covariates we have, or
only a subset of them. We might include interactions and higher-order terms,
or only the linear components. How do we select among the possible models?

It is tempting to look at how well the model fits the data we used to estimate
it. We should resist the temptation. Think about the sample data as consisting

1

of both signal and noise:

Yi = f (x i) + εi = signal+ noise.

In statistical modeling, including predictive modeling, our goal is to extract the
signal. We don’t want to generalize from features of the data that are due to
chance or sampling variation. This means we don’t want a model that fits the
sample data perfectly. The in-sample fit can only be perfect if we’re treating
the noise in our data as if it were signal.

As an example, imagine we have the data plotted below.

1.0

1.5

2.0

−1.0 −0.5 0.0 0.5 1.0
x

y

It looks quadratic

We want to build a predictive model of Yi given our single covariate X i. The
relationship appears to be nonlinear, so we want to fit a polynomial model of
the form

Yi = β0 +
d
∑

k=1

βkX k
i + εi.

Do we want a linear model? A quadratic model? Something even higher-
order? Let’s look at the results of fitting dth-order polynomials for d = 1, . . . , 9.

2

d = 1 (R^2 = 0.03) d = 2 (R^2 = 0.78) d = 3 (R^2 = 0.79)

d = 4 (R^2 = 0.80) d = 5 (R^2 = 0.81) d = 6 (R^2 = 0.82)

d = 7 (R^2 = 0.87) d = 8 (R^2 = 0.88) d = 9 (R^2 = 0.88)

1.0

1.5

2.0

1.0

1.5

2.0

1.0

1.5

2.0

−1.0 −0.5 0.0 0.5 1.0−1.0 −0.5 0.0 0.5 1.0−1.0 −0.5 0.0 0.5 1.0
x

y
Polynomial regression can overfit

The higher the dimension, the greater the in-sample fit, as measured by R2.
But a more holistic look at these plots, not to mention common sense, suggests
that a 9th-degree polynomial might not be the best modeling choice. The high-
degree models are essentially connecting the dots. If we were to uncover a new
observation from the population, we would probably expect it to fall closer to
the parabolic curve from the quadratic model than the overfit curve from the
highest-dimension model. How can we formalize this intuition and select the
best predictive model?

Cross-Validation

Ideally, we would have a constant inflow of new data that we could use to build
and verify predictive models. As new data came in, we would run our models
on it and keep the ones with the best predictive performance. Unfortunately,

3

for most of us, new data is expensive to collect or only comes out infrequently.1

How can we use our sample data to estimate the prediction error, or general-
izability, of our models?

Cross-validation lets us estimate the prediction error of a model without col-
lecting new data. To calculate the cross-validation estimate of the prediction
error of the OLS estimator β̂:

1. For each observation i = 1, . . . , N :

1. Regress Y on X using every observation except the i’th. Let β̂ (−i)

denote the resulting estimate.
2. Calculate the predicted value for the i’th observation using the model

fit using the rest of the data: Ŷi = x>i β̂
(−i).

2. Calculate the mean squared error of these “out of sample” predictions:

êCV =
1
N

N
∑

i=1

(Yi − Ŷi)
2.

If we have a variety of candidate models and our goal is prediction, we should
prefer models with lower cross-validation error.

Returning to our polynomial regression example, here is the cross-validation
error of each estimator.

dim cv_error rank

[1,] 1 0.1903 6

[2,] 2 0.0433 1

[3,] 3 0.0457 2

[4,] 4 0.0461 3

[5,] 5 0.0662 4

[6,] 6 0.1603 5

[7,] 7 0.2322 7

[8,] 8 0.3271 8

[9,] 9 1.6516 9

As I’ve described it, cross-validation entails re-running each candidate model
N times. If N is huge, or there are lots of candidate models, or the model takes

1Though if you’re ever at a conference and wondering why so many graduate students are
writing papers that use Twitter data for predictive modeling. . .

4

forever to run, we have a problem. Luckily, for these cases we have K-fold
cross-validation:

1. Randomly assign each observation i = 1, . . . , N to a fold ki ∈ {1, . . . , K}.

2. For each fold k = 1, . . . , K: Regress Y on X using every observation not
in the k’th fold. Let β̂ (−k) denote the resulting estimate.

3. For each observation i = 1, . . . , N : Calculate the predicted value using
the model fit when i’s fold was excluded: Ŷi = x>i β̂

(−ki).

4. Calculate the mean squared error of the out-of-fold predictions:

êCV =
1
N

N
∑

i=1

(Yi − Ŷi)
2.

Typical choices are K = 5 or K = 10. What we looked at before was the special
case of K = N , also known as leave-one-out cross-validation.

Ridge Regression and the LASSO

There are more algorithms for predictive modeling than you could learn in a
lifetime. Hastie, Tibshirani, and Friedman (2009) provide an overview. For our
purposes today, we will focus on two predictive algorithms that generalize OLS:
ridge regression (Hoerl and Kennard 1970) and the least absolute shrinkage
and selection operator, or LASSO (Tibshirani 1996). The typical use case for
both of these is that the number of covariates is “large” relative to the sample
size, in which case the OLS estimator either does not exist (p > N) or is too
highly variable to make reliable predictions.

Remember that OLS solves the least-squares problem

min
β∈Rp

¨

N
∑

i=1

(Yi − x>i β)
2

«

.

Ridge regression modifies the problem to include a penalty for the magnitude
of the coefficients:

min
β∈Rp

¨

N
∑

i=1

(Yi − x>i β)
2 +λ

p
∑

j=1

β2
j

«

.

5

If λ = 0, ridge regression is identical to OLS. As λ→∞, the ridge regression
coefficients go to zero. In between, ridge regression “shrinks” the coefficients
toward zero.

We usually scale the covariates to have variance one before running ridge re-
gression, so that the penalty is “fair”. Similarly, we either exclude the intercept
from the penalty or center the covariates and response to have mean zero so
that the intercept can be dropped. The R implementation we will discuss does
this for you automatically.

The trick to ridge regression is selecting the penalty parameter λ. This is a
Goldilocks problem: our predictions will be too variable if λ is too low and too
biased if λ is too high. We can use cross-validation to approximate the best
value for prediction:

1. Set up a grid of M values λ1, . . . ,λM .

2. For each m = 1, . . . , M : use leave-one-out or K-fold cross-validation to
estimate the prediction error of ridge regression with penalty λm.

3. Find the value of λm with the lowest êCV(λm). Call it λCV.

4. Run ridge regression on the full sample using penalty parameter λCV.

The LASSO solves a similar problem to ridge regression:

min
β∈Rp

¨

N
∑

i=1

(Yi − x>i β)
2 +λ

p
∑

j=1

|β j|

«

.

As with ridge regression, we typically center and scale the variables and use
cross-validation to select λ.

Whereas ridge regression shrinks all of the coefficients toward zero, the LASSO
pushes a subset of them all the way to zero. In other words, the LASSO per-
forms automatic model selection for us. The main downside of the LASSO rel-
ative to ridge regression is computational; it solves a harder optimization prob-
lem and thus takes longer to run. The software has gotten good enough that
this doesn’t matter. Of course, in any particular application, you may fit both
ridge and LASSO estimators and pick whichever has the lowest cross-validation
error. If you care about interpretability or parsimony—and who doesn’t?—you
may prefer the LASSO even if its cross-validation error is slightly higher.

6

ols ridge

lasso

1.0

1.5

2.0

1.0

1.5

2.0

−1.0 −0.5 0.0 0.5 1.0
x

y
The LASSO is magical

ols ridge lasso

(Intercept) 1.353 1.3533 1.353

poly(x, 9)1 0.320 0.1921 0.000

poly(x, 9)2 1.490 0.8931 0.902

poly(x, 9)3 -0.147 -0.0883 0.000

poly(x, 9)4 0.183 0.1094 0.000

poly(x, 9)5 0.203 0.1215 0.000

poly(x, 9)6 0.139 0.0836 0.000

poly(x, 9)7 -0.381 -0.2285 0.000

poly(x, 9)8 -0.181 -0.1086 0.000

poly(x, 9)9 0.109 0.0655 0.000

Standard Errors

Ridge regression and the LASSO are estimators, which means they have sam-
pling distributions and associated standard errors. Unfortunately, their stan-
dard errors are not nearly as easy to estimate from data as those of OLS are.

7

There is no nice formula to plug in.2 What do we do, then, to quantify our
uncertainty about ridge or LASSO estimates?

1. Just don’t do it. Usually, though not always, our interest in standard
errors stems from our interest in hypothesis testing. The best model for
prediction is probably not the best one for testing hypotheses. For the
latter task, it is safer to stick with an estimator like OLS whose statistical
properties (particularly small-sample properties) are well understood.

Predictive models serve a different purpose than models intended for hy-
pothesis testing. You may not be testing a hypothesis if your goal is to pre-
dict Yi well as a function of x i. To take an example from my own research,
Rob Carroll and I have a working paper (Carroll and Kenkel 2016) in
which we measure material military power by finding the function of mil-
itary capabilities that best predicts militarized dispute outcomes. Since
our task is purely predictive, we don’t worry about calculating measures
of uncertainty or performing hypothesis tests—we have no hypotheses to
test! But we do worry a lot about making sure we’re not overfitting, and
we carefully use cross-validation to measure the out-of-sample predictive
accuracy of our model.

2. Use computationally intensive methods. Sometimes you might use
a predictive model even if your main goal is to test a hypothesis. For
example, you might have almost as many covariates as observations and
worry that OLS will have gigantic standard errors. In situations like this,
you might use a predictive model like the LASSO as a means to a non-
predictive end.

Since there are no canned formulas available, you will need to use com-
putationally intensive methods to approximate the standard errors of es-
timators like cross-validated ridge regression or LASSO. These methods
typically involve repeatedly resampling from your data and recalculating
the estimator on each resample. The simplest method that I know of that
works for model selection problems is Efron (2014).

2For ridge regression, formulas for the standard errors are available for cases when λ is cho-
sen a priori. In this case, ridge regression is a linear estimator. In most real-world applications,
however, you’ll be selecting λ via cross-validation or some other data-driven method.

8

Appendix: Implementation

To illustrate cross-validation, ridge regression, and the LASSO, we will return
to our old friend, the occupational prestige dataset.

library("car")

data(Prestige)

head(Prestige)

education income women prestige census type

gov.administrators 13.1 12351 11.16 68.8 1113 prof

general.managers 12.3 25879 4.02 69.1 1130 prof

accountants 12.8 9271 15.70 63.4 1171 prof

purchasing.officers 11.4 8865 9.11 56.8 1175 prof

chemists 14.6 8403 11.68 73.5 2111 prof

physicists 15.6 11030 5.13 77.6 2113 prof

To make our lives easier, we will remove all missing observations from the
dataset. (Next week, we’ll talk about better ways to deal with missing data.)

sum(is.na(Prestige))

[1] 4

Prestige <- na.omit(Prestige)

First, we’ll use OLS to estimate the conditional expectation function, then we’ll
cross-validate to estimate its prediction error. To make things interesting, we’ll
estimate a three-way interactive model: occupational prestige as a function of
the interaction of education, income, and percentage of women.

fit_ols <- lm(prestige ~ education * income * women,

data = Prestige)

summary(fit_ols)

##

Call:

lm(formula = prestige ~ education * income * women, data = Prestige)

##

Residuals:

Min 1Q Median 3Q Max

-17.769 -5.057 0.398 4.983 14.864

9

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.74e+01 9.95e+00 -2.76 0.0070

education 5.89e+00 8.67e-01 6.79 1.2e-09

income 4.27e-03 1.39e-03 3.07 0.0028

women 1.19e-01 3.06e-01 0.39 0.6992

education:income -2.37e-04 1.04e-04 -2.29 0.0242

education:women -1.88e-02 2.59e-02 -0.73 0.4700

income:women 1.85e-05 7.87e-05 0.23 0.8148

education:income:women 4.76e-07 5.85e-06 0.08 0.9353

##

Residual standard error: 7.31 on 90 degrees of freedom

Multiple R-squared: 0.83, Adjusted R-squared: 0.817

F-statistic: 62.9 on 7 and 90 DF, p-value: <2e-16

To cross-validate, we will use a loop. In each iteration of the loop, we’ll fit the
model to all but the i’th row of the data. Then we’ll compare the prediction
for the i’th response to the actual value.

library("foreach")

cv_ols <- foreach (i = 1:nrow(Prestige), .combine = "c") %do% {

dat_i <- Prestige[-i,]

fit_i <- lm(prestige ~ education * income * women,

data = dat_i)

pred_i <- predict(fit_i, newdata = Prestige[i,])

(pred_i - Prestige$prestige[i])^2

}

mean(cv_ols)

[1] 62.7

What this means is that the average squared distance between prediction and
reality is 62.7. To make this more interpretable, we can take the square root:

sqrt(mean(cv_ols))

[1] 7.92

10

On average, our out-of-sample prediction of occupational prestige using this
model will be off by about 7.9.

To run ridge regression and the LASSO with λ selected via cross-validation, we
will use the excellent glmnet package.

library("glmnet")

We will rely on the function cv.glmnet(), which automatically sets up a grid
of values of λ to cross-validate over and selects the best one. Unfortunately,
this function does not use the “formula notation” y ~ x1 + x2 + ... familiar
to us from lm() and friends. Instead, it takes the matrix x of covariates and the
response vector y as individual arguments. So we will need to construct these
ourselves. The model.matrix() function lets us translate a formula into a
matrix. We add a -1 to the formula we used before, since the glmnet functions
will automatically add an intercept for us.

X <- model.matrix(prestige ~ education * income * women - 1,

data = Prestige)

colnames(X)

[1] "education" "income"

[3] "women" "education:income"

[5] "education:women" "income:women"

[7] "education:income:women"

Y <- Prestige$prestige

Now we can use cv.glmnet() to perform K-fold cross-validation. For leave-
one-out cross-validation, we would set nfolds to equal the number of rows in
the dataset. In the interest of computation time, we will use K = 5.

The alpha argument controls whether we use ridge regression or the LASSO.
For ridge regression, set alpha = 0; for the LASSO, set alpha = 1 (the de-
fault).3

fit_ridge <- cv.glmnet(x = X, y = Y, alpha = 0, nfolds = 5)

fit_lasso <- cv.glmnet(x = X, y = Y, alpha = 1, nfolds = 5)

3Values between 0 and 1 allow for a mix of the ridge and LASSO penalties, known as the
elastic net.

11

We can use the coef() method to recover the coefficients associated with the
λ that has the lowest cross-validation error.

coef_ols <- coef(fit_ols)

coef_ridge <- coef(fit_ridge, s = "lambda.min")

coef_lasso <- coef(fit_lasso, s = "lambda.min")

cbind(coef_ols,

coef_ridge,

coef_lasso)

8 x 3 sparse Matrix of class "dgCMatrix"

coef_ols 1 1

(Intercept) -2.74e+01 2.00e+00 -5.60412

education 5.89e+00 3.36e+00 4.16046

income 4.27e-03 8.42e-04 0.00116

women 1.19e-01 -6.10e-02 .

education:income -2.37e-04 3.15e-05 .

education:women -1.88e-02 1.38e-04 .

income:women 1.85e-05 6.29e-06 .

education:income:women 4.76e-07 8.94e-07 .

References

Carroll, Robert J., and Brenton Kenkel. 2016. “Capability Ratios Predict Noth-
ing.” http://doe-scores.com.

Efron, Bradley. 2014. “Estimation and Accuracy After Model Selection.” Jour-
nal of the American Statistical Association 109 (507): 991–1007.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009. The Elements
of Statistical Learning. 2nd ed. New York: Springer.

Hoerl, Arthur E, and Robert W Kennard. 1970. “Ridge Regression: Biased
Estimation for Nonorthogonal Problems.” Technometrics 12 (1): 55.

Tibshirani, Robert. 1996. “Regression Shrinkage and Selection via the Lasso.”
Journal of the Royal Statistical Society. Series B (Methodological) 58 (1): 267–
88.

12

http://doe-scores.com

