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Last time, we learned the basics of instrumental variables but left many ques-
tions unanswered.

• What if we observe some of the confounding factors and wish to control
for them?

• What if we have more than one variable that is correlated with the error
term?

• What if we have more than one instrumental variable?

Today we will talk about two-stage least squares, a general-purpose instrumen-
tal variables estimator that can handle all of these situations. Like last time,
these notes draw from Angrist and Pischke (2009, chap. 4) and Angrist and
Pischke (2015, chap. 4).

The Estimator

If you guessed that an estimator called “two-stage least squares” would involve
running OLS two times, pat yourself on the back—you’re right! Assume we
want to estimate the coefficients of the linear model

Yi = β0 + β1X1i + · · ·+ βpX pi + εi,

but some of the variables X ji are correlated with the error term. OLS estimation
of this equation will be biased and inconsistent, as we have already seen.

Suppose that we have a collection of q > p instruments, Z1i, . . . , Zqi, where
each satisfies the following conditions:

1. First stage: Z affects X .
2. Independence: Z is uncorrelated with ε.
3. Exclusion restriction: Z only affects Y through its effect on X .
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Under these conditions, any exogenous X variable (i.e., any that is uncorrelated
with the error term) can be included in Z . Then we just need at least one
additional instrument per endogenous variable. We call the instruments that
are not themselves covariates the excluded instruments, for reasons that will
become clear momentarily.

The two-stage least squares estimator of β is the following procedure:

1. Regress each X j on Z and save the predicted values, X̂ j. If X j is included
in Z , we will have X̂ j = X j.

2. Estimate β via the OLS estimate of the regression model

Yi = β0 + β1X̂1i + · · ·+ βpX̂ pi + εi.

This is obviously easy to implement, and it allows us to incorporate exoge-
nous covariates, multiple endogenous variables, and more instruments than
endogenous variables (also called overidentifying restrictions).

Fun fact: letting X be the N×p matrix of covariates and Z be the N×q matrix of
instruments, the instrumental variables estimator can be calculated in a single
step via the equation Greene (2003, 78)

β̂2SLS(Y,X,Z) = [X>Z(Z>Z)−1Z>X]−1X>Z(Z>Z)−1Z>Y.

This is the GLS estimator with Ω = [Z(Z>Z)−1Z>]−1. In practice, though, you
won’t directly carry out either two-stage least squares or the GLS formula—
you’ll feed the covariates and the instruments to the computer and let it do the
work for you.

The Intuition

Remember from last time our basic recipe,

effect of Ti on Yi =
effect of Zi on Yi

effect of Zi on Ti

If the instrument and the treatment are both binary, then the instrumental
variables estimator of the average treatment effect is a ratio of differences of
means:

τ̂IV =
ȲZ=1 − ȲZ=0

T̄Z=1 − T̄Z=0

.
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Our goal now is to see that two-stage least squares gives us the same answer.

Consider the first-stage regression,

Ti = γ0 + γ1Zi +ηi.

You know from your previous adventures with regression that the OLS esti-
mates will be γ̂0 = T̄Z=0 and γ̂1 = T̄Z=1 − T̄Z=0. The predicted values will
therefore be

T̂i = T̄Z=0 + (T̄Z=1 − T̄Z=0)Zi.

Now suppose we run the second-stage regression,

Yi = α0 +α1 T̂i + εi.

Our ultimate goal is to show that the estimated coefficient on T̂i is identical to
the IV estimate of the average treatment effect: α̂1 = τ̂IV. We can rewrite the
second-stage regression as

Yi = α0 +α1 T̂i + εi

= α0 +α1(T̄Z=0 + (T̄Z=1 − T̄Z=0)Zi) + εi

= α0 +α1 T̄Z=0
︸ ︷︷ ︸

κ0

+α1(T̄Z=1 − T̄Z=0)
︸ ︷︷ ︸

κ1

Zi + εi

= κ0 +κ1Zi + εi.

We know that the OLS estimation of the final equation will give us κ̂1 = ȲZ=1−
ȲZ=0. Therefore, the OLS estimation of the first equation gives us

α̂1 =
κ̂1

T̄Z=1 − T̄Z=0

=
ȲZ=1 − ȲZ=0

T̄Z=1 − T̄Z=0

= τ̂IV,

as we wanted.

Standard Errors

Although it is useful to think of the instrumental variables estimator as two-
stage least squares, in practice you should not run two separate regression
models. One reason why not is that the nominal standard errors for β in
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the second-stage regression will be wrong. Instead of running two-stage least
squares “by hand”, use a command like ivregress in Stata or ivreg() in the
AER package in R.

Heteroskedasticity, autocorrelation, and clustering are just as problematic for
estimating the standard errors of 2SLS as they are for OLS. Luckily, we can use
the same Huber-White corrections as we did for OLS.

Instrument Selection and the Bias-Variance Tradeoff

Most commonly, instrumental variables are a scarce resource. An applied an-
alyst is far more likely to worry about having too few instruments than too
many. Suppose, however, you were to find yourself with an abundance of in-
struments. How should you proceed? There are two related principles to keep
in mind.

• There is a bias-variance tradeoff: holding your sample size fixed, an ad-
ditional instrument usually reduces your standard error but increases the
bias. Since the bias vanishes asymptotically, you may think this is not a
problem in very large samples, but you would be wrong (Bound, Jaeger,
and Baker 1995).

An informal way to see why this is true is to think about how the 2SLS
estimator is constructed. The more instruments we have, the closer the
predicted values of the endogenous regressors get to the true values. (Re-
member that adding a covariate to a regression model always increases
the R2.) With enough instruments, the predicted values are approxi-
mately the true values, which means 2SLS is approximately OLS. Since
OLS is inconsistent under the assumption of endogeneity, this is not a
good thing.

• Weak instruments increase the bias more than they reduce the variance.

Two strong instruments are better than ten weak instruments. It is harder
to say whether one weak instrument is better than two weak instruments, or
whether OLS might be better than 2SLS if every instrument is weak. It depends
on the sample size, the magnitude of the weakness of the instruments, and
the plausibility of the independence and exclusion restrictions. When you only
have weak instruments available, you should not stake strong claims on a single

4



specification. The best you can hope for is to have a result that is robust across
different permutations of instruments.

For a model with a single endogenous variable, the usual rule of thumb is that
the F -statistic of the regression of the endogenous variable on the excluded
instruments should be at least 10 (Stock, Wright, and Yogo 2002).

Appendix: Implementation

There are a few different implementations of 2SLS in R. We will use the one
from the AER package.

library("AER")

We will reproduce columns 3 and 4 of Table IV in Angrist and Krueger (1991).
First, load up the data.

AK <- read.csv("AK1991-clean.csv")

head(AK)

## year quarter educ wage age

## 1 1929 3 11 5.02 40.5

## 2 1929 1 12 5.06 41.0

## 3 1928 3 12 5.38 41.5

## 4 1923 4 12 5.18 46.2

## 5 1924 1 16 6.38 46.0

## 6 1923 1 12 5.00 47.0

The response is wage. The (endogenous) treatment variable is educ. The (ex-
ogenous) covariates are age, age squared, and year dummies. The excluded
instruments are interactions of the year dummies with quarter dummies.

OLS is the same as it ever was.

fit_ols <- lm(wage ~ educ + age + I(age^2) + factor(year),

data = AK)

summary(fit_ols)

##

## Call:

## lm(formula = wage ~ educ + age + I(age^2) + factor(year), data = AK)
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##

## Residuals:

## Min 1Q Median 3Q Max

## -5.700 -0.219 0.056 0.307 4.393

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.858292 1.521034 0.56 0.573

## educ 0.080168 0.000355 225.65 <2e-16

## age 0.144552 0.067600 2.14 0.032

## I(age^2) -0.001542 0.000748 -2.06 0.039

## factor(year)1921 -0.001585 0.009216 -0.17 0.863

## factor(year)1922 -0.011239 0.014724 -0.76 0.445

## factor(year)1923 -0.009737 0.019546 -0.50 0.618

## factor(year)1924 -0.006589 0.023558 -0.28 0.780

## factor(year)1925 0.003161 0.026867 0.12 0.906

## factor(year)1926 0.009874 0.029710 0.33 0.740

## factor(year)1927 0.019409 0.032388 0.60 0.549

## factor(year)1928 0.031107 0.035337 0.88 0.379

## factor(year)1929 0.024737 0.039048 0.63 0.526

##

## Residual standard error: 0.593 on 247186 degrees of freedom

## Multiple R-squared: 0.171, Adjusted R-squared: 0.171

## F-statistic: 4.25e+03 on 12 and 247186 DF, p-value: <2e-16

It is instructive to run 2SLS by hand, even though we should rely on canned
procedures in our published work.

X <- model.matrix(~ educ + age + I(age^2) + factor(year),

data = AK)

Z <- model.matrix(~ age + I(age^2) + factor(year) * factor(quarter),

data = AK)

Y <- AK$wage

ols_first <- lm(X ~ Z)

X_hat <- fitted(ols_first)

ols_second <- lm(Y ~ X_hat)

coef(ols_second)

## (Intercept) X_hat(Intercept) X_hateduc

## 0.02035 NA 0.13104
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## X_hatage X_hatI(age^2) X_hatfactor(year)1921

## 0.14092 -0.00136 0.00521

## X_hatfactor(year)1922 X_hatfactor(year)1923 X_hatfactor(year)1924

## 0.00953 0.01952 0.03275

## X_hatfactor(year)1925 X_hatfactor(year)1926 X_hatfactor(year)1927

## 0.05602 0.07070 0.09459

## X_hatfactor(year)1928 X_hatfactor(year)1929

## 0.11376 0.11341

The canned procedure is the ivreg() function. It works like lm(), except the
model formula is in the form y ~ x1 + x2 + ... | z1 + z2 + ..., where
the x terms are the variables whose coefficients we want to estimate and the
z terms are the instruments. Any exogenous covariates should be included in
both parts of the formula, as in the example below.

fit_iv <- ivreg(wage ~ educ + age + I(age^2) + factor(year) |

age + I(age^2) + factor(year) * factor(quarter),

data = AK)

summary(fit_iv)

##

## Call:

## ivreg(formula = wage ~ educ + age + I(age^2) + factor(year) |

## age + I(age^2) + factor(year) * factor(quarter), data = AK)

##

## Residuals:

## Min 1Q Median 3Q Max

## -6.0310 -0.2586 0.0483 0.3365 4.7730

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.020346 1.675494 0.01 0.990

## educ 0.131042 0.033357 3.93 8.6e-05

## age 0.140915 0.070388 2.00 0.045

## I(age^2) -0.001360 0.000787 -1.73 0.084

## factor(year)1921 0.005211 0.010575 0.49 0.622

## factor(year)1922 0.009533 0.020500 0.47 0.642

## factor(year)1923 0.019516 0.027956 0.70 0.485

## factor(year)1924 0.032753 0.035586 0.92 0.357

## factor(year)1925 0.056019 0.044527 1.26 0.208

## factor(year)1926 0.070699 0.050460 1.40 0.161
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## factor(year)1927 0.094591 0.059713 1.58 0.113

## factor(year)1928 0.113762 0.065490 1.74 0.082

## factor(year)1929 0.113406 0.070928 1.60 0.110

##

## Residual standard error: 0.617 on 247186 degrees of freedom

## Multiple R-Squared: 0.102, Adjusted R-squared: 0.102

## Wald test: 8.67 on 12 and 247186 DF, p-value: <2e-16

If you want heteroskedasticity-consistent standard errors, you can use the vcovHC()
function. Unfortunately, the dataset here is so big that it crashes the function,
at least on my computer. So let’s take a subsample of the data, run 2SLS on it,
and then calculate the HC1 estimator of the standard errors.

set.seed(14)

AK_sample <- AK[sample(1:nrow(AK), 10000), ]

fit_iv_sample <- update(fit_iv,

data = AK_sample)

summary(fit_iv_sample)

##

## Call:

## ivreg(formula = wage ~ educ + age + I(age^2) + factor(year) |

## age + I(age^2) + factor(year) * factor(quarter), data = AK_sample)

##

## Residuals:

## Min 1Q Median 3Q Max

## -5.3300 -0.2210 0.0511 0.3028 2.8224

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -1.24938 7.51985 -0.17 0.868

## educ 0.06966 0.03687 1.89 0.059

## age 0.24466 0.33181 0.74 0.461

## I(age^2) -0.00265 0.00367 -0.72 0.471

## factor(year)1921 -0.02980 0.04549 -0.66 0.512

## factor(year)1922 -0.06312 0.07279 -0.87 0.386

## factor(year)1923 -0.06202 0.09690 -0.64 0.522

## factor(year)1924 -0.04359 0.11917 -0.37 0.715

## factor(year)1925 -0.00222 0.13836 -0.02 0.987

## factor(year)1926 -0.03198 0.15054 -0.21 0.832

## factor(year)1927 0.00534 0.16801 0.03 0.975
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## factor(year)1928 0.00969 0.18185 0.05 0.957

## factor(year)1929 0.01441 0.20238 0.07 0.943

##

## Residual standard error: 0.585 on 9987 degrees of freedom

## Multiple R-Squared: 0.179, Adjusted R-squared: 0.178

## Wald test: 1.11 on 12 and 9987 DF, p-value: 0.344

summary(fit_iv_sample,

vcov = vcovHC(fit_iv_sample, type = "HC1"))

##

## Call:

## ivreg(formula = wage ~ educ + age + I(age^2) + factor(year) |

## age + I(age^2) + factor(year) * factor(quarter), data = AK_sample)

##

## Residuals:

## Min 1Q Median 3Q Max

## -5.3300 -0.2210 0.0511 0.3028 2.8224

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -1.24938 7.30492 -0.17 0.86

## educ 0.06966 0.03556 1.96 0.05

## age 0.24466 0.32713 0.75 0.45

## I(age^2) -0.00265 0.00366 -0.72 0.47

## factor(year)1921 -0.02980 0.04646 -0.64 0.52

## factor(year)1922 -0.06312 0.07691 -0.82 0.41

## factor(year)1923 -0.06202 0.10327 -0.60 0.55

## factor(year)1924 -0.04359 0.12571 -0.35 0.73

## factor(year)1925 -0.00222 0.14477 -0.02 0.99

## factor(year)1926 -0.03198 0.15756 -0.20 0.84

## factor(year)1927 0.00534 0.17263 0.03 0.98

## factor(year)1928 0.00969 0.18451 0.05 0.96

## factor(year)1929 0.01441 0.19851 0.07 0.94

##

## Residual standard error: 0.585 on 9987 degrees of freedom

## Multiple R-Squared: 0.179, Adjusted R-squared: 0.178

## Wald test: 1.18 on 12 and 9987 DF, p-value: 0.291

What if you have panel data? You can get instrumental variables estimates
with fixed effects and/or clustered standard errors through plm(), by using
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the same kind of two-part formula that ivreg() takes.
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