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A Brief Exposition

The derivations in these notes are taken largely from Angrist and Pischke (2009,
chap. 4) and Angrist and Pischke (2015, chap. 4). I recommend buying both
of these books if you are interested in instrumental variables or causal infer-
ence more generally. Hye Young is going to make you buy Angrist and Pischke
(2009) next semester anyway, and Angrist and Pischke (2015) is a gentler in-
troduction to the same material.

Assume we have a binary treatment Ti and an observed response Yi = Yi(Ti).
Like last week, suppose our goal is to estimate the average treatment effect,

τ= E[Yi(1)− Yi(0)].

Assume there is an unobserved confounding variable X i. Remember that con-
founding means X i affects both treatment status and the potential outcomes.
The ordinary difference of means estimator of the treatment effect is therefore
biased.

The ideal solution to this problem would be to go out and collect data on X i.
If the costs of doing so are prohibitive, we have a second-best solution: instru-
mental variables. In this scenario, a variable Zi is an instrument if it meets the
following three conditions (Angrist and Pischke 2015, 106–7):

1. First stage: Zi affects Ti. More generally, the instrument(s) affect the
variable(s) of interest.

2. Independence: Zi is independent from X i. More generally, the instru-
ment(s) are independent from any other confounding variables.

3. Exclusion restriction: Zi only affects Yi through its effect on Ti. More
generally, the instrument(s) affect the response only through their effect
on on the variable(s) of interest.
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Taken together, the latter two conditions imply that Zi is independent of the
potential outcomes:

Zi ⊥⊥ (Yi(0), Yi(1)).

The exclusion restriction implies that

effect of Zi on Yi = (effect of Zi on Ti)× (effect of Ti on Yi)

We are most interested in the last term, the effect of the treatment. Rearranging
the above expression, we see that the average treatment effect is a ratio of
effects of the instrument:

effect of Ti on Yi =
effect of Zi on Yi

effect of Zi on Ti
.

The first stage assumption is what allows us to make this rearrangement—
if Zi has no effect on Ti, then we are dividing by zero. The independence
assumption allows us to individually estimate the two components of the ratio.

Assume linear models for both treatment and response:

Ti = γ0 + γ1Zi + γ2X i +ηi,

Yi = β0 + β1Ti + β2X i + εi,

where ηi and εi have mean zero and are independent of X i, Zi, and Ti. This
model implies a constant treatment effect of β1 for every observation, so the
average treatment effect τ = β1. You will learn in Stat III how the interpre-
tation of instrumental variable estimates changes when the treatment effect is
allowed to vary across individuals.

Substituting the first equation into the second, we have

Yi = β0 + β1Ti + β2X i + εi

= β0 + β1 (γ0 + γ1Zi + γ2X i +ηi) + β2X i + εi

= β0 + β1γ0
︸ ︷︷ ︸

π0

+β1γ1
︸︷︷︸

π1

Zi + (β1γ2 + β2)X i + β1ηi + εi
︸ ︷︷ ︸

νi

= π0 +π1Zi + νi.

As in the verbal representation above, we can write the effect of the treatment
as a ratio of effects of the instrument:

β1 =
π1

γ1
.
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The question, then, is whether we can consistently estimate π1 and γ1. If so,
then their ratio is a consistent estimate of the average treatment effect, β1.
We will rely on the following fun fact about omitted variable bias (or the lack
thereof):

If the included variables are uncorrelated with the error term and any
omitted variables, then OLS gives an unbiased and consistent estimate
of the coefficients of the included variables.

To estimate π1, we will run a regression of Yi on Zi (and a constant). Our
independence assumption implies that

Cov(Zi,νi) = Cov(Zi, (β1γ2 + β2)X i + β1ηi + εi) = 0,

so the coefficient estimate π̂1 is a consistent estimate of π1.

To estimate γ1, we will run a regression of Ti on Zi. Our independence as-
sumption implies that

Cov(Zi,γ2X i +ηi) = 0,

so γ̂1 is a consistent estimate of γ1.

Finally, then, the instrumental variable estimator of the average treatment effect
is

β̂1 =
π̂1

γ̂1
.

Under the first stage, independence, and exclusion restriction assumptions,
β̂1 is a consistent estimator of β1.1 An instrumental variable lets us break a
seemingly intractable problem—estimating a treatment effect when strong ig-
norability does not hold—into two tractable problems. The trick, of course, is
finding a good instrument. These three conditions, particularly the indepen-
dence assumption and the exclusion restriction, are hard to meet.

The first stage assumption is more plausible; in the social world, we tend to
assume most things have some effect on most other things, though perhaps
a small one. However, there is a cost to using a weak instrument—an instru-
ment that only barely meets the first stage assumption. We divide by γ̂1 to
form the IV estimator. If γ1 is near zero, then γ̂1 will usually be near zero too.

1The IV estimator is not unbiased in general, even though its two constituent parts are
unbiased estimators of the respective parameters, because E[A/B] 6= E[A]/E[B] in general.
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When our denominator is close to zero, small changes in the numerator cor-
respond to wild differences in the resulting ratio. Therefore, the IV estimator
with a weak instrument is liable to have huge standard errors. If no better
instrument is available, whether it is better to use IV with a weak instrument
(consistent but inefficient) or to use OLS (inconsistent) depends on a number
of factors, including the sample size and the overall strength of the unobserved
confounding.

“Assignment”

There is no problem set this week, but I encourage you to undertake the fol-
lowing exercise:

• Read the three empirical papers assigned on the syllabus for March 24
(Angrist and Krueger 1991; Acemoglu, Johnson, and Robinson 2001;
Miguel, Satyanath, and Sergenti 2004).

• Identify in each paper the instrument used, and explain why it meets (or
doesn’t!) each of the three conditions for an instrumental variable.
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