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So far in this course, I have been careful not to use causal language. Today
that ends—not the part about being careful (hopefully) but the self-imposed
ban on causal talk. We will:

• Remind ourselves about what it means for random variables to be in-
dependent and conditionally independent, which are crucial concepts in
causal analysis.

• Get acquainted with the canonical statistical model of causality.

• Learn some basic, if imperfect, methods for estimating causal effects.

• Discuss variable selection for modeling observational data, with frequent
reminders that fancy statistics cannot save you from poorly designed re-
search.

Independence and Conditional Independence

Let A, B, and C be random variables. To keep things simple, assume each is
discrete. A and B are independent, written A⊥⊥ B, if

Pr(A= a, B = b) = Pr(A= a)Pr(B = b)

for all a and b. If A and B are independent, then

Pr(A= a |B = b) =
Pr(A= a, B = b)

Pr(B = b)
= Pr(A= a)

for all a and b, which in turn implies

E[A |B = b] = E[A]

for all b.
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Conditional independence is a weaker condition than independence. Loosely
speaking, if two variables are not independent, but we can account for the
source of the dependence between them, they are conditionally independent.
Formally, A and B are conditionally independent given C , written A⊥⊥ B |C , if

Pr(A= a, B = b |C = c) = Pr(A= a |C = c)Pr(B = b |C = c)

for all a, b, and c. Conditional independence of A and B given C implies

Pr(A= a |B = b, C = c) = Pr(A= a |C = c)

for all a, b, and c, and

E[A |B = b, C = c] = E[A |C = c]

for all b and c.

Here is a basic example of random variables that are conditionally independent
but not independent. Let C be a non-degenerate, real-valued random variable,
and let ε and η be real-valued random variables that are independent of each
other and of C . Define A and B by

A= C + ε,
B = C +η.

Since A and B both depend on C , they are not independent: the value of B
is more likely to be high if that of A is high, and so on. However, they are
conditionally independent given C: for any a, b, and c,

Pr(A= a, B = b |C = c) = Pr(ε= a− c,η= b− c)
= Pr(ε= a− c)Pr(η= b− c)
= Pr(A= a |C = c)Pr(B = b |C = c).

This simple example illustrates a more general principle. If C contains all of the
factors that are determinants of both A and B, then A and B are conditionally
independent given C .

The Potential Outcomes Model

The canonical statistical model of causality is the potential outcomes model,
which is also sometimes called the Neyman-Rubin model (Holland 1986).1 The

1Yes, it is standard to cite Holland for an attribution to Neyman and Rubin. Life is strange
and beautiful.
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potential outcomes model assumes that we have a set of units i = 1, . . . , N , each
of which receives a treatment Ti and produces a response Yi. The response is
a function of the treatment received, so we write it as Yi(Ti). Hence the ter-
minology of potential outcomes: each unit has numerous possible responses,
one for each treatment it might receive.

Table 1. Potential outcomes.

Ti = 0 Ti = 1 Ti = 2

Unit 1 Y1(0) Y1(1) Y1(2)
Unit 2 Y2(0) Y2(1) Y2(2)
...
Unit N YN (0) YN (1) YN (2)

In practice, we cannot observe all of these potential outcomes. Each unit re-
ceives a particular treatment and responds accordingly. The other potential
outcomes are counterfactual—what would have happened if the treatment had
been different.

Table 2. Observed outcomes.

Ti = 0 Ti = 1 Ti = 2

Unit 1 Y1(0) Y1(1) Y1(2)
Unit 2 Y2(0) Y2(1) Y2(2)
...
Unit N YN (0) YN (1) YN (2)

From here on, I will assume a binary treatment, valued 0 or 1 for every unit.
Everything here carries over to treatments with more values, but the notation
gets messier. We may call the set of units with Ti = 1 the “treatment group$
and those with Ti = 0 the”control group“.

In causal analysis, we are interested in the effect of receiving the treatment
versus receiving the control. In other words, what is the difference between a
unit’s potential response if it receives the treatment and its potential response
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if it receives the control? We define this as the causal effect for unit i, or

τi = Yi(1)− Yi(0).

What Holland (1986) calls the fundamental problem of causal inference is that
these unit-specific causal effects are unobservable. We only observe one out-
come per unit and thus cannot directly measure the differences between po-
tential outcomes.

Instead of unit-specific causal effects, what about the average causal effect
across units? Define the average treatment effect as

τ= E[τi] = E[Yi(1)− Yi(0)],

where the expectation is taken with respect to the population distribution of
units. Our goal will be to estimate τ.

If each unit is randomly assigned to the treatment or control group, then it
is easy to estimate τ. What makes it easy is that, under random assignment,
treatment status Ti is independent from the potential outcomes Yi(0) and Yi(1).
Everyone is just as likely to receive the treatment, so we have:

Pr(Ti = 1 |Yi(0), Yi(1)) = Pr(Ti = 1).

NA

E





1
N1

∑

i:Ti=1

Yi −
1
N0

∑

i:Ti=0

Yi



= E[Yi(1) | Ti = 1]− E[Yi(0) | Ti = 0]

= E[Yi(1)]− E[Yi(0)]
= E[Yi(1)− Yi(0)]
= τ.

NA

This does not mean all is lost, though. Let X i denote the full set of confounding
variables. Anything that affects both treatment assignment and either or both
of the potential outcomes goes into X i. By accounting for all these factors,
we remove the sources of dependence between treatment assignment and the
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potential outcomes. In other words, we have the conditional independence
condition

Ti ⊥⊥ (Yi(0), Yi(1)) |X i.

If this conditional independence condition holds, along with the overlap con-
dition

0< Pr(Ti = 1 |X i)< 1 for all feasible X i,

then we say that treatment assignment is strongly ignorable given X i (Rosen-
baum and Rubin 1983). Under strong ignorability, we can estimate treatment
effects without bias by properly adjusting for the confounding variables X i. But
what do we mean by “properly adjusting”? And exactly which variables do we
need to adjust for? These are the topics of the next two sections.

Estimating Treatment Effects

With nonrandom assignment, the problem with the unadjusted difference of
means estimator is that we’re comparing dissimilar units. The control group
and the treatment group differ in terms of their background characteristics,
and the difference of means picks up those characteristics’ effects in addition
to those of the treatment.

We want to estimate the average treatment effect while holding these back-
ground characteristics fixed. Our estimator should only compare units that are
similar in terms of confounding factors, so as to isolate the effect of the treat-
ment. There are a mind-boggling number of estimators that claim to do so. We
will consider two of the simplest. The first is subclassification, which always
compares apples to apples but is only applicable in limited circumstances. The
second is our longtime friend regression, which is broadly applicable but may
sometimes compare apples to oranges.

Subclassification

We can take the notion of only comparing similar observations to an extreme—
only compare those with identical covariate values. Subclassification involves
calculating the difference of means within each group defined by a unique
combination of covariates, then averaging over those groups.
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The subclassification estimator is motivated by the observation that, under
strong ignorability,

τ=
∑

x

Pr(X i = x) (E[Yi(1) | Ti = 1, X i = x]− E[Yi(0) | Ti = 0, X i = x]) .

In words, the average treatment effect is the weighted average of the differ-
ences of means within each covariate grouping, where the weights are the
population proportions of each grouping.

To define the subclassification estimator, suppose there are finitely many com-
binations of covariates, X i = x1, . . . , xK . Let Nk0 and Nk1 denote the number
of control and treated observations with X i = xk, and assume these are all
nonzero. Then the subclassification estimator is

τ̂=
K
∑

k=1

Nk0 + Nk1

N

�
∑

i:X i=xk ,Ti=1 Yi

Nk1
−

∑

i:X i=xk ,Ti=0 Yi

Nk0

�

.

The problem is, the Nk’s might not all be zero. If you have p binary covariates,
then there are 2p+1 unique combinations of covariates and treatment. For ex-
ample, with p = 9, there are 1,024 groupings. In any reasonably sized sample,
at least one of these is liable to be empty. It gets even worse with continuous
covariates. These you must discretize just to make subclassification feasible.
The discretization must be coarse enough not to leave empty cells, but coarser
schemes correspond to more biased estimators (Cochran 1968).

Regression

With many covariates or continuous covariates, a more practical solution is
regression: estimate τ as the coefficient on Ti in a regression of Yi on (Ti, X i).

Unlike subclassification, regression does not guarantee that each unit is com-
pared only to like units. A particularly extreme contrived example is illustrated
below.
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Regression may extrapolate too much

If we tried this with subclassification, we would quickly see that there is no
overlap in the confounding variable between the treatment and control groups,
meaning drawing any inference we draw about treatment effects will be based
on extrapolation. But if we used OLS thoughtlessly, we would not be alerted
to any problem. The lesson here is not “Don’t use OLS”, but “Don’t use OLS
thoughtlessly”. Look at your data, pick a specification carefully, check the qual-
ity of the fit, and so on.

On that note, another problem with OLS is that the relationship between X i

and the expected response might not be linear. Subclassification bypasses this,
since it doesn’t model the relationship between X i and the expected response.
Obviously, just as in non-causal regression modeling, you should be cautious
about nonlinearities and use higher-order terms judiciously when using OLS
to estimate treatment effects.

Selecting Covariates

In general, the quality of your data matters more than your choice of estimator.
If you have a large sample and strong ignorability is satisfied, then most decent
estimators will yield similar results. But we are rarely so lucky. It is hard
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to think of observational data in political science where we have successfully
identified and measured all possible confounding variables.

If we cannot eliminate bias due to confounding, how can we best deal with
it? The best way is to design our studies well from the outset—to collect data
on samples of mostly comparable units, well tailored to our hypotheses, such
that potential confounders are minimal, identifiable, and measurable (Freed-
man 1991). But sometimes we cannot find a natural experiment and we must
resign ourselves to the second-best, dealing with messy, heterogeneous data.
In this unfortunate circumstance, how should we choose which covariates to
adjust for? It is tempting to say “all of them”, so as to maximize our chance
of achieving strong ignorability. On the contrary, as long as some confounders
remain unobserved, adding more variables to the model does not necessarily
decrease bias (Clarke 2006). Not to mention the problems for efficiency and
interpretability.

Affects Treatment and Response: Yes

A confounding variable, by definition, is one that directly affects both treat-
ment assignment and the potential outcomes. These are the biggest threats to
causal inference, and these are what we should take the most care to adjust
for in our empirical analyses. Again, our work will be most convincing if we
deal with confounding through the research design rather than through post
hoc statistical adjustments. If that is not possible, though, it is important to
identify and control for the variables with the strongest confounding effects.2

Only Affects Response: No

There is no need to control for a variable that affects the response but does not
at all affect treatment assignment. Such variables are not a threat to strong ig-
norability and thus do not induce bias in our estimates. We can sometimes es-
timate causal effects more efficiently by including them, but the consequences

2Under certain conditions, controlling for weak confounders can be dicey if there are
stronger unobserved confounders. My working paper with Kevin Clarke and Miguel Rueda,
“Misspecification and the Propensity Score: The Possibility of Overadjustment” (title to be
changed very soon), gives the details.
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for bias are nil. Plus, in most observational settings, any variable that affects
the outcome but cannot possibly affect treatment assignment is probably post-
treatment and therefore should be left out of the model in any case (see below).

My friends who actually do empirical work tell me that reviewers love suggest-
ing that you include variables like these in your model. If there is no way the
variable in question could affect the assignment of the relevant treatment, just
note in a footnote (or your response to the reviewers) that the variable is not
a confounder and thus need not be controlled for. Cite Rosenbaum and Rubin
(1983) and the formal definition of strong ignorability if you have to.

Only Affects Treatment: No (But Hold on to It. . . )

There is no need to control for a variable that affects treatment assignment but
does not at all directly affect the potential outcomes. We call these variables
instruments. As we will see next week, instruments are very useful for estimat-
ing treatment effects when strong ignorability is violated, but we should not
“control for” them the same way we would an ordinary confounder.

Affected by Treatment: NO!

Not only is there no need to control for variables that come after the treatment—
you should not do so. Rosenbaum (1984) gives a formal exposition on why not
to control for post-treatment variables. I will instead pursue a proof by exam-
ple.

Imagine that we want to estimate the effect of smoking on lung cancer. Further-
more, imagine that smoking causes lung cancer through precisely one channel:
buildup of tar in the lungs. You smoke, it fills your lungs with tar, you get can-
cer. According to our counterfactual model of causality, the average treatment
effect of smoking on cancer is positive. For each smoker, had they not smoked,
they would have less tar in their lungs and a lower chance of contracting cancer
(and vice versa for the non-smokers).

If we were to estimate the regression equation

Lung Canceri = β0 + β1Smokingi + X ′iβ + εi,
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where X i is the full set of confounding variables, we would yield a positive
coefficient on smoking. We would correctly conclude that smoking causes lung
cancer. But now imagine we included the post-treatment variable tar buildup
in our regression equation, estimating

Lung Canceri = β0 + β1Smokingi + β2Tari + X ′iβ + εi.

Remember we assumed that the only path between smoking and cancer was
through tar buildup. So in our model where we control for the post-treatment
factor, we would yield a coefficient close to 0 on smoking and conclude, ab-
surdly, that smoking does not cause cancer. Ergo, via proof by extreme exam-
ple, we should not control for post-treatment variables.

Reviewers will tell you to control for post-treatment variables. Don’t do it (and
cite Rosenbaum as your reason not to). You will read papers that control for
post-treatment variables. Don’t believe their results. Their authors will say,
yeah, but post-treatment bias shrinks the estimated effect and just makes it
harder to pass the significance test; I passed the significance test anyway so
my hypothesis must be right! Tell them, no, post-treatment bias is not neces-
sarily conservative (http://cyrussamii.com/?p=730) and then ask them why
they’re more interested in getting stars than accurately estimating the causal
effect of their treatment.

Summary

We’ve covered a lot of ground today.

• We began to speak in the counterfactual language of causality.

• We discussed a couple of simple estimators for causal effects when strong
ignorability holds.

• We worked through some basic heuristics for variable selection with ob-
servational data.

– Do control for pre-treatment confounders.
– Safe to leave out other pre-treatment variables.
– Definitely leave out post-treatment variables.

Next time, we’ll work on using instrumental variables to obtain valid estimates
even when strong ignorability is violated.
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