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Today we will go through the most popular method for data on units within
larger groups, of which panel data is one example. There are numerous consid-
erations for data like this. We could spend an entire semester on panel methods
just for linear models, then another on the nonlinear case. The coverage here
is just meant to get your feet wet in the world of panel methods, not to give
you all the answers. Before you do any real-world research with panel data, I
would urge you to look carefully at Wooldridge (2002) or another full-length
treatment of panel methods.

Grouped Data

Assume that for each of i = 1, . . . , N groups we observe j = 1, . . . , J units. For
example, we might observe individual students grouped by classrooms. Or we
might observe the same units repeatedly over time—this is called panel data,
usually replacing j and J with the “time” indices t and T .1

Our notation changes a bit with grouped data.

• Unit-level
– Yi j: the response for the j’th unit of group i (scalar)
– x i j = (x i j1, . . . , x i jp): the covariates for the j’th unit of group i (p×1

vector)
• Group-level

– Yi = (Yi1, . . . , YiJ): the collection of responses for group i (J × 1
vector)

– Xi: the collection of covariates for group i (J × p matrix)
• Full data

1Everything we do here would go through if we allowed the number of observations to vary
across groups, but the notation would get uglier. In the panel data context we say that the
panels are balanced if the number of observations is the same for each group and unbalanced
otherwise.
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– Y = (Y1, . . . , YN ): all responses (NJ × 1 vector)
– X: all covariates (NJ × p matrix)
– D: matrix of dummy variables for group membership (NJ ×N ma-

trix)
– Z =

�

X D
�

: matrix of all covariates and group membership dum-
mies (NJ × (p+ N) matrix)

Don’t get intimidated by all the new notation—it’s just book-keeping. If we
assume as usual that the conditional expectation of the response is a linear
function of the covariates, we have a familiar-looking linear model,

Yi j = x>i jβ + εi j,

where εi j is unit-specific noise or random error.

The reason we need special methods for grouped data is that the standard
Gauss-Markov assumptions are often implausible in a grouped setting. At a
minimum, it is unlikely that εi j has constant variance and is uncorrelated across
observations. In most applications, we would expect some correlation within
groups that cannot be fully explained as a function of observables. As with
heteroskedasticity, this means our estimated standard errors are wrong and
need to be corrected.

If within-group error correlations are the only issue, then OLS still gives an
unbiased and consistent estimate of β , even if the standard errors are trouble-
some. It gets worse if there is unobserved heterogeneity between groups that
is correlated with the covariates. For example, imagine that we have data on
students grouped by classrooms, and we are modeling test scores as a func-
tion of household income. If students from higher-income families are more
likely to be placed with high-ability teachers and teacher ability is unobserv-
able, then OLS is a poor estimator. It will not even be unbiased or consistent,
and we must use a different estimator.

Clustered Standard Errors

Let us imagine an example of the first, less serious problem: errors that are
not independent across observations within the same group. Suppose that
half of the U.S. states received a federal grant to improve elementary educa-
tion, and the other half did not. Our unit of observation is school districts,
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grouped within states. We want to know whether receiving the grant affected
test scores. What we cannot measure is how well the states used the money.
If some states used it better than others, then we would expect the error term
to be correlated across school districts within the state. In a state where the
money was used wisely, we would expect most of the schools to do “better
than expected”—to have positive residuals, in the language of regression. Con-
versely, in a state where the money was squandered, we would expect most of
the schools to do worse than we would otherwise predict.

This is one example of the general phenomenon Moulton (1986; 1990) identifies—
that there is often substantial correlation in the random errors within groups,
especially when we are looking at the effects of variables that only vary at the
group level. One way I think about it is that, with grouped data and group-
level covariates, the effective number of observations is less than the nominal
number of observations. If we use the OLS standard errors, we are pretending
to have more data than we really do.

When the errors are correlated within groups (and possibly heteroskedastic
within and across groups), we can continue to get our coefficient estimates
from OLS. We just need to correct the standard errors. The methodology is
similar to that of Huber-White standard errors under heteroskedasticity. As-
sume that the variance matrix of the error term ε is a block-diagonal matrix of
the form

Ω=









Ω1 0 · · · 0
0 Ω2 · · · 0
...

...
. . .

...
0 0 · · · ΩN









,

where each Ωi is a J × J matrix of the form

Ωi =









σ2
i1 ρi12σi1σi2 . . . ρi1Jσi1σiJ

ρi12σi1σi2 σ2
i2 . . . ρi1Jσi1σiJ

...
...

. . .
...

ρi1Jσi1σiJ ρi2Jσi2σiJ · · · σ2
iJ









.

If we knew Ω, we could use generalized least squares (a generalization of
weighted least squares that we will talk about momentarily) to efficiently es-
timate β and correctly estimate the standard errors. However, even without
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knowing Ω, we may obtain an asymptotically correct estimate of the OLS stan-
dard errors, just as we did under heteroskedasticity. The cluster-robust variance
matrix estimate is

Σ̂CR = (X
>X)−1

�

N
∑

i=1

X>i êi ê
>
i Xi

�

(X>X)−1.

The earliest derivation of this estimator was Liang and Zeger (1986), and that
is whom you should cite when you use it. Arellano (1987) derives the same
estimator but is a bit easier to follow. As with the heteroskedasticity-consistent
standard error estimator, there are various finite-sample corrections to Σ̂CR that
you may want to use; we will not go through those here.

In practice, this estimator is useful only when the number of groups, N , is
large. The consensus seems to be that N = 50 is large enough (Cameron and
Miller 2015), so you Americanists may go ahead and rejoice. However, if you
observe a small number of units over a long period of time, the cluster-robust
standard error estimator will be severely biased. Beck and Katz (1995) provide
a similar estimator for such data, except with the summation in the middle of
the “sandwich” taken over the J time periods instead of the N groups.

ASIDE: Never Use Clustered Standard Errors in Logit/Probit

For OLS estimation of linear models, clustered standard errors “work” because
β̂OLS is a consistent estimator of β even under non-spherical errors. This is
not true for logit, probit, and similar models. If there are correlated errors
across observations in a logistic regression model, the usual estimator of β
(the maximum likelihood estimator) is inconsistent. No matter how big our
sample size, it won’t necessarily yield a result close to the true coefficients.
There is no point in getting a more accurate estimate of the standard errors of
such an estimator, because the estimator itself is crap. See Freedman (2006)
for more on this point.

Random Effects

Just as Huber-White standard errors do not fix the inefficiency of OLS under
heteroskedasticity, cluster-robust standard errors do not fix the inefficiency of
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OLS under within-group correlation. To get a handle on the efficiency problem,
we will make further assumptions about the source of that correlation.

Suppose that each group has a different intercept, with αi denoting the inter-
cept for group i. (From here on we will assume, contrary to our usual practice,
that x i j does not contain an intercept.) In other words, the baseline level of
the response varies across groups. We can then decompose the error term εi j

into the group-specific effect αi and an idiosyncratic unit-level error ηi j, giving
us the model

Yi j = x>i jβ +αi +ηi j
︸ ︷︷ ︸

εi j

.

We will assume that ηi j is independent and identically distributed across ob-
servations, so the within-group correlation comes exclusively from the fact that
the group effect αi enters the error term for every observation in the group.
Let V [αi] = σ2

α
and V [ηi j] = σ2

η
. Under this model, the covariance structure

is

Cov[εi j,εi′ j′] =











σ2
η
+σ2

α
i = i′, j = j′,

σ2
α

i = i′, j 6= j′,
0 i 6= i′.

This is equivalent to assuming Ω takes the block-diagonal form given above,
with each Ωi along the diagonal being

Ωi =









σ2
η
+σ2

α
σ2
α

· · · σ2
α

σ2
α

σ2
η
+σ2

α
· · · σ2

α
...

...
. . .

...
σ2
α

σ2
α

· · · σ2
η
+σ2

α









.

If we knew σ2
α

and σ2
η
, we could efficiently estimate β via the generalized least

squares estimator,

β̂GLS(Y,X,Ω) = (X>Ω−1X)−1X>Ω−1Y.

As you surely noticed, this looks identical to the weighted least squares esti-
mator, because WLS is the special case of GLS in which Ω is a diagonal matrix.
Anyway, the problem is, we don’t know the two error variances. But we can
estimate them. In the interests of time, I will skip over exactly how we do
this—you can find the details in Johnston and DiNardo (1997, chap. 12). If
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we replace σ2
α

and σ2
η

in Ω with their corresponding estimates and call the

resulting matrix Ω̂, we can use the feasible GLS estimator,

β̂FGLS(Y,X, Ω̂) = (X>Ω̂−1X)−1X>Ω̂−1Y.

We call this application of feasible GLS the random effects estimator, or β̂RE. As
long as we have correctly specified the form of Ω and the usual exogeneity con-
dition holds (E[εi j | x i j] = 0), then the random effects estimator is consistent
and asymptotically efficient: in large enough samples it gets close to the right
answer and no other linear estimator gets closer on average. The small-sample
properties are generally unknown.

But I have tried to slip something past you here. I referred to the “usual ex-
ogeneity condition” like a bit of a throwaway. But this is unduly restrictive
when εi j contains a group-specific effect. It implies that the group-specific ef-
fects must be uncorrelated with all of the covariates—a condition that is at
best questionable in most observational data settings. Recall the earlier ex-
ample where kids from higher-income families get placed in classrooms with
higher-ability teachers. If Cov[x i j,αi] 6= 0, then the random effects estimator
will be inconsistent. If this is so, we need to bite the bullet and estimate the
αi ’s.

Fixed Effects

The fixed effects estimator is much easier to define than the random effects
estimator. It is simply the regression of Y on Z, the matrix that contains both
the covariates and the group membership dummies:

β̂FE(Y,Z) = β̂OLS(Y,Z)[1, . . . , p],

in other words, only the first p elements of the p+N OLS estimates. Fixed ef-
fects takes the part of the error term that is correlated with the covariates—the
group-specific intercepts—and brings them into the covariate matrix, purging
the source of omitted variable bias that arises under OLS or random effects.

Most textbook treatments of fixed effect estimators go through a whole rigma-
role about computation, because inverting the (N + p)× (N + p) matrix Z>Z
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used to be impossible for large N . This is no longer true,2 so you can safely
ignore most of the hand-wringing about computational difficulties.

The standard errors of the fixed effects estimator are usually higher than those
of the random effects estimator, since estimating N additional parameters uses
a lot of degrees of freedom. This leads us to the following pair of observations.

• If the random effects assumption is met (group-specific effects are uncor-
related with covariates), then the random effects and fixed estimators are
both consistent, but fixed effects is less efficient.

• If the random effects assumption is not met, then the random effects
estimator is inconsistent while the fixed effects estimator is consistent.

The typical test for whether fixed effects are necessary comes from Hausman
(1978). Under the null hypothesis that both estimators are consistent (and
thus fixed effects are unnecessary and inefficient), the test statistic

H = (β̂RE − β̂FE)
>(Σ̂FE − Σ̂RE)

−1(β̂RE − β̂FE)

asymptotically has a χ2 distribution with p degrees of freedom.

The other main drawback of fixed effects estimation is that you cannot estimate
the effects of variables that do not vary within groups. (Why not?) See Greene
(2003, sec. 13.5) for estimation strategies with panel data and time-invariant
covariates.

One final note: Arellano (1987) shows that the cluster-robust variance matrix
estimator can be used with fixed effects. Cameron and Miller (2015) recom-
mend doing so, at least when the number of groups is large.

Summary

• Cluster your standard errors when estimating the effect of a group-level
variable with individual-level data, or any other time you suspect corre-
lated errors within groups. This advice applies only for linear models.

2I simulated a dataset with a single covariate, N = 1,000, and J = 1,000, meaning the fixed
effects regression entailed estimating 1,001 parameters from 1,000,000 observations. It took
less than two minutes to run on my not-especially-powerful laptop. That said, should you ever
have N another order of magnitude above that, the computational tricks given in the textbook
treatments will once again be of use.
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• Use random effects when it is plausible the group-level effects are uncor-
related with the covariates (i.e., rarely).

• Use fixed effects when the group-level effects may be correlated with the
covariates (i.e., usually).

Appendix: Implementation

The methods introduced here can be implemented via the plm package.

library("plm")

We will use the Produc dataset from plm, a riveting collection of economic
statistics about the U.S. states from 1970 to 1986.

data(Produc, package = "plm")

head(Produc)

## state year region pcap hwy water util pc gsp emp unemp

## 1 ALABAMA 1970 6 15033 7326 1656 6051 35794 28418 1010 4.7

## 2 ALABAMA 1971 6 15502 7526 1721 6255 37300 29375 1022 5.2

## 3 ALABAMA 1972 6 15972 7765 1765 6442 38670 31303 1072 4.7

## 4 ALABAMA 1973 6 16406 7908 1742 6756 40084 33430 1136 3.9

## 5 ALABAMA 1974 6 16763 8026 1735 7002 42057 33749 1170 5.5

## 6 ALABAMA 1975 6 17316 8158 1752 7406 43972 33604 1155 7.7

The functions in plm assume that your data are organized like Produc, with
the grouping variable in the first column and the identification variable (time,
in the case of panel data) in the second column. See the plm package vignette
on how to get datasets not organized this way into line.

We will treat unemployment (unemp) as our response and public capital stock
(pcap) and private capital stock (pc) as our covariates. As a benchmark, let’s
use OLS.

fit_ols <- lm(unemp ~ pcap + pc,

data = Produc)

summary(fit_ols)

##

## Call:
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## lm(formula = unemp ~ pcap + pc, data = Produc)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.559 -1.622 -0.337 1.213 11.595

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 6.20e+00 1.08e-01 57.57 <2e-16

## pcap 1.01e-05 5.52e-06 1.82 0.069

## pc 2.56e-06 2.56e-06 1.00 0.319

##

## Residual standard error: 2.2 on 813 degrees of freedom

## Multiple R-squared: 0.0352, Adjusted R-squared: 0.0328

## F-statistic: 14.8 on 2 and 813 DF, p-value: 4.79e-07

The “pooling” estimator implemented by plm() ought to give us the same re-
sults.

fit_pooling <- plm(unemp ~ pcap + pc,

data = Produc,

model = "pooling")

summary(fit_pooling)

## Oneway (individual) effect Pooling Model

##

## Call:

## plm(formula = unemp ~ pcap + pc, data = Produc, model = "pooling")

##

## Balanced Panel: n=48, T=17, N=816

##

## Residuals :

## Min. 1st Qu. Median 3rd Qu. Max.

## -3.560 -1.620 -0.337 1.210 11.600

##

## Coefficients :

## Estimate Std. Error t-value Pr(>|t|)

## (Intercept) 6.20e+00 1.08e-01 57.57 <2e-16

## pcap 1.01e-05 5.52e-06 1.82 0.069

## pc 2.56e-06 2.56e-06 1.00 0.319

##
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## Total Sum of Squares: 4060

## Residual Sum of Squares: 3920

## R-Squared: 0.0352

## Adj. R-Squared: 0.035

## F-statistic: 14.8141 on 2 and 813 DF, p-value: 4.79e-07

We can obtain the cluster-robust variance matrix estimate via vcovHC(). Make
sure to specify type = "arellano" so as to get the usual estimator. It is not
entirely clear to me which of the various finite-sample adjustments corresponds
to the defaults in Stata.

crvm_pooling <- vcovHC(fit_pooling,

method = "arellano",

type = "HC1")

summary(fit_pooling, .vcov = crvm_pooling)

## Oneway (individual) effect Pooling Model

##

## Call:

## plm(formula = unemp ~ pcap + pc, data = Produc, model = "pooling")

##

## Balanced Panel: n=48, T=17, N=816

##

## Residuals :

## Min. 1st Qu. Median 3rd Qu. Max.

## -3.560 -1.620 -0.337 1.210 11.600

##

## Coefficients :

## Estimate Std. Error t-value Pr(>|t|)

## (Intercept) 6.20e+00 2.45e-01 25.34 <2e-16

## pcap 1.01e-05 1.21e-05 0.83 0.41

## pc 2.56e-06 7.30e-06 0.35 0.73

##

## Total Sum of Squares: 4060

## Residual Sum of Squares: 3920

## R-Squared: 0.0352

## Adj. R-Squared: 0.035

## F-statistic: 14.8141 on 2 and 813 DF, p-value: 4.79e-07

Notice that our t-statistics are nearly cut in half, even though our variables
have within-group variation (unlike Moulton (1990)’s example).
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We can also use plm() to estimate a random-effects model.

fit_random <- plm(unemp ~ pcap + pc,

data = Produc,

model = "random")

summary(fit_random)

## Oneway (individual) effect Random Effect Model

## (Swamy-Arora’s transformation)

##

## Call:

## plm(formula = unemp ~ pcap + pc, data = Produc, model = "random")

##

## Balanced Panel: n=48, T=17, N=816

##

## Effects:

## var std.dev share

## idiosyncratic 3.09 1.76 0.69

## individual 1.36 1.17 0.31

## theta: 0.656

##

## Residuals :

## Min. 1st Qu. Median 3rd Qu. Max.

## -3.640 -1.360 -0.286 1.010 9.730

##

## Coefficients :

## Estimate Std. Error t-value Pr(>|t|)

## (Intercept) 5.67e+00 2.53e-01 22.42 < 2e-16

## pcap 1.55e-09 1.12e-05 0.00 0.99989

## pc 1.59e-05 4.55e-06 3.51 0.00048

##

## Total Sum of Squares: 2920

## Residual Sum of Squares: 2800

## R-Squared: 0.0421

## Adj. R-Squared: 0.042

## F-statistic: 17.88 on 2 and 813 DF, p-value: 2.52e-08

And, finally, a fixed-effects model, which plm() calls the "within" model.

fit_fixed <- plm(unemp ~ pcap + pc,

data = Produc,
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model = "within")

summary(fit_fixed)

## Oneway (individual) effect Within Model

##

## Call:

## plm(formula = unemp ~ pcap + pc, data = Produc, model = "within")

##

## Balanced Panel: n=48, T=17, N=816

##

## Residuals :

## Min. 1st Qu. Median 3rd Qu. Max.

## -3.810 -1.170 -0.248 0.947 8.390

##

## Coefficients :

## Estimate Std. Error t-value Pr(>|t|)

## pcap 2.27e-04 3.18e-05 7.14 2.2e-12

## pc 4.18e-06 6.57e-06 0.64 0.52

##

## Total Sum of Squares: 2770

## Residual Sum of Squares: 2370

## R-Squared: 0.144

## Adj. R-Squared: 0.135

## F-statistic: 64.2646 on 2 and 766 DF, p-value: <2e-16

We can extract the fixed-effect estimates themselves via fixef().

fixef(fit_fixed)

## ALABAMA ARIZONA ARKANSAS CALIFORNIA

## 3.764 3.201 5.021 -24.352

## COLORADO CONNECTICUT DELAWARE FLORIDA

## 1.907 2.223 5.724 -2.950

## GEORGIA IDAHO ILLINOIS INDIANA

## 0.091 5.926 -7.483 1.499

## IOWA KANSAS KENTUCKY LOUISIANA

## 1.176 1.258 2.487 2.395

## MAINE MARYLAND MASSACHUSETTS MICHIGAN

## 6.133 -0.469 -0.081 -2.073

## MINNESOTA MISSISSIPPI MISSOURI MONTANA

## -0.913 4.790 0.576 5.399
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## NEBRASKA NEVADA NEW_HAMPSHIRE NEW_JERSEY

## 1.034 6.122 3.867 -0.476

## NEW_MEXICO NEW_YORK NORTH_CAROLINA NORTH_DAKOTA

## 5.876 -22.417 0.589 3.715

## OHIO OKLAHOMA OREGON PENNSYLVANIA

## -5.208 2.212 4.914 -6.741

## RHODE_ISLAND SOUTH_CAROLINA SOUTH_DAKOTA TENNESSE

## 6.046 3.895 2.943 1.080

## TEXAS UTAH VERMONT VIRGINIA

## -11.161 4.234 5.624 -0.961

## WASHINGTON WEST_VIRGINIA WISCONSIN WYOMING

## 1.081 6.941 0.192 3.799

If we wanted to include time dummies as well, we could specify effect =
"twoways" in the fitting function.

fit_fixed_2 <- plm(unemp ~ pcap + pc,

data = Produc,

effect = "twoways",

model = "within")

summary(fit_fixed_2)

## Twoways effects Within Model

##

## Call:

## plm(formula = unemp ~ pcap + pc, data = Produc, effect = "twoways",

## model = "within")

##

## Balanced Panel: n=48, T=17, N=816

##

## Residuals :

## Min. 1st Qu. Median 3rd Qu. Max.

## -3.3300 -0.8030 -0.0449 0.7500 6.0200

##

## Coefficients :

## Estimate Std. Error t-value Pr(>|t|)

## pcap 9.10e-05 2.62e-05 3.47 0.00054

## pc -1.27e-05 5.04e-06 -2.51 0.01216

##

## Total Sum of Squares: 1260

## Residual Sum of Squares: 1240
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## R-Squared: 0.0164

## Adj. R-Squared: 0.015

## F-statistic: 6.23517 on 2 and 750 DF, p-value: 0.00206

fixef(fit_fixed_2, effect = "time")

## 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

## 3.55 4.28 3.77 3.19 3.83 6.52 5.46 4.94 3.94 3.82 5.18 5.67 7.70 7.68

## 1984 1985 1986

## 5.64 5.49 5.35

phtest() implements the Hausman test. Remember that the null hypothesis
is that both estimators are consistent; if we reject it, then the random effects
estimator is inconsistent and we must use fixed effects.

phtest(fit_random, fit_fixed)

##

## Hausman Test

##

## data: unemp ~ pcap + pc

## chisq = 100, df = 2, p-value <2e-16

## alternative hypothesis: one model is inconsistent
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