
A Detour into Nonlinear Models
. . . for Binary Response Variables
Brenton Kenkel — PSCI 8357
February 25, 2016

Today we are going to briefly look away from linear models and become ac-
quainted with their nonlinear cousins. Specifically, we are going to look at
the most common use case for nonlinear models in political science: modeling
binary response variables.

Let me be up front about my biases here.1 I think nonlinear models are wildly
overused in political science. OLS is easier to interpret, easier to extend, and
more robust than nonlinear estimators—or at least the set of nonlinear esti-
mators typically used in political science. I think these benefits outweigh the
potential loss of fidelity due to approximating a nonlinear process with a linear
model.

That said, my view is not the majority view among political scientists. If you
have a binary response variable, your reviewers will expect you to use logistic
regression or one of its cousins. So let us get acquainted.

Why Not a Linear Model?

Suppose we have a binary response Yi ∈ {0, 1}, which we want to model as a
function of a vector of p covariates x i. If we use a linear model for this problem,
we are essentially treating the probability that Yi = 1 as a linear function of
the covariates:

Pr(Yi = 1 | x i) = E[Yi | x i] = x>i β .

What is wrong with doing it this way?

The first and most serious problem is that the assumption of constant marginal
changes in conditional expectation (or constant marginal effects, for you causal-

1“Biases” isn’t the right word. This is just what I think. If anything, I should be biased in
favor of wacky nonlinear models, having worked on them in one of my dissertation chapters
and written an R package to estimate a particular class of them.

1

language scofflaws) may be implausible. For example, suppose you want to
examine the effect of exposure to a particular advertisement on individuals’
probability of voting for a Democrat. You might imagine that for attentive,
committed partisans—those whose baseline probability of voting for a Demo-
crat is close to 0 or 1—the ad will have little effect. If the ad has any effect
at all, it will probably be greatest for those who would otherwise be close to
indifferent.

The second problem is that we might yield nonsense predictions from our
model. Suppose we estimate the regression function

Pr(Yi = 1 | x i) = β̂0 + β̂1 x i1,

where β̂1 > 0. Then we will estimate a nonsensical negative probability for any
x i1 < −β̂0/β̂1 and a nonsensical probability that exceeds 1 for any x i1 > (1−
β̂0)/β̂1. In practice, though, you’ll mostly yield sensible predictions within the
range of your data, and nonsense outside of it. You shouldn’t be extrapolating
outside the range of your data in any case: remember XKCD #605.

The final problem is heteroskedasticity. Let us simulate some data according
to a linear probability model, fit the regression line, and look at the residuals.

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

The residuals are greatest close to the middle, when the estimated probability
is close to 0.5. This is a generic feature of linear probability models, which you

2

https://xkcd.com/605/

can verify by recalling the mathematics of variance. Since Y 2
i = Yi for a binary

variable, we have
V [Yi | x i] = E[Y 2

i | x i]− E[Yi | x i]
2

= E[Yi | x i]− E[Yi | x i]
2

= x>i β(1− x>i β),

which is greatest when x>i β is closest to 0.5 and least when x>i β is close to 0
or 1.

An Alternative Model

A perhaps more sensible model of the conditional expectation function for a
binary response is the logistic regression model,

Pr(Yi = 1 | x i) =
exp(x>i β)

1+ exp(x>i β)
= Λ(x>i β).

This model has the nice feature that the conditional expectation always lies
between 0 and 1, no matter how extreme the covariates. As x>i β → ∞, so
does exp(x>i β), and Pr(Yi = 1 | x i) → 1. Conversely, as x>i β → −∞, then
exp(x>i β)→ 0, and Pr(Yi = 1 | x i)→ 0.

We can obtain this model by assuming there is an unobserved latent response
Y ∗i ,

Y ∗i = x>i β + εi,

where εi is drawn from a logistic distribution. If we assume that we observe

Yi =

¨

0 Y ∗i < 0

1 Y ∗i ≥ 0,

then we have the logistic regression model. We can obtain a rather similar
model by assuming εi is drawn from a standard normal distribution, in which
case

Pr(Yi = 1 | x i) = Φ(x
>
i β),

where Φ(·) is the cumulative distribution of the standard normal distribution.
We call this the probit regression model. I will only focus on the logistic regres-
sion model today, but all the techniques and formulas we will derive for logistic
regression (or logit) go through for probit regression (or probit), replacing Λ(·)
and its derivatives with Φ(·) and its respective derivatives.

3

Interpretation

We will skip over the details of estimating logistic regression coefficients. The
very short version is that we derive the standard estimator using the method
of maximum likelihood. Since the maximum likelihood estimator cannot be
expressed in closed form (i.e., there is no nice equation like for OLS), we use
iterative numerical methods to calculate it. From this point forward, take it
as given that we have a coefficient estimate β̂ and a corresponding estimated
variance matrix Σ̂.

In a couple of important ways, logistic regression coefficients are like linear re-
gression coefficients. A positive coefficient on X j indicates that greater values
of X j are associated with a greater probability of Yi = 1, whereas a negative
coefficient indicates that greater values of X j are associated with a lower prob-
ability of Yi = 1. In addition, hypothesis testing for logistic regression coeffi-
cients is essentially the same as for linear model coefficients. To test the null
hypothesis that β j = 0, we divide the estimated coefficient by its estimated
standard error and compare to the relevant Z-statistics. To test composite null
hypotheses that are linear functions of β , we use Wald tests, just as we did
with linear regression.

So if all you care about is rejecting null hypotheses, logistic regression ain’t
so hard. But you ought to care also about interpreting the model you have
estimated, and this is where it gets tricky. As a study in contrast, let us mo-
mentarily recall the linear model. Suppose I told you I ran a linear regression
on a sample of Democratic primary voters, where the response variable is vot-
ing for Bernie Sanders. Suppose moreover I told you I estimated a coefficient
of 0.1 on the “Shops at Whole Foods” variable. You could immediately infer
what that means: that if we compared two different Democratic voters who
were identical except one shopped at Whole Foods and the other didn’t, the
Whole Foods shopper would be 10% more likely to Feel the Bern.

Not so for logistic regression. Now suppose I told you I ran a logit using the
same variables, and that my estimated coefficient on “Shops at Whole Foods”
were 1. The only thing you could infer from this information alone is that
if we compared two otherwise-identical Democrats, the Whole Foods shopper
would be more likely to Feel the Bern. You could not say how much more
likely. Why the difference? In the linear model (specifically, the standard lin-
ear model without higher-order terms), we have constant marginal changes in

4

conditional expectation:
∂ E[Yi | x i]
∂ x i j

= β j.

But in the logistic regression model, the marginal change in conditional expec-
tation with respect to a particular variable depends on all of the covariates and
coefficients:

∂ Pr(Yi = 1 | x i)
∂ x i j

= β jΛ(x
>
i β)(1−Λ(x

>
i β)).

The estimated MCCE may well be different for each observation in the data,
even those with the same value of the j’th covariate, depending on its estimated
probability of Yi = 1. Remember that this is a feature, not a bug—one of our
motivations for ditching the linear probability model was the implausibility of
constant marginal effects.

One way people like to interpret logistic regression results is by calculating
predicted probabilities. This entails fixing x i,− j at some “central” values (usually
means or medians) while varying x i j across a grid x (1)i j , . . . , x (M)i j , each time
calculating the “predicted probability”

P̂r(Yi = 1 | x (m)i) = Λ(x
(m)
i β̂),

where x (m)i = (x i1, . . . , x (m)i j , . . . , x ip). Does this give us a representative picture
of the effect size? That’s the supposed point of fixing x i,− j at central values. But
remember that, for a nonlinear function f (·), in general E[f (x)] 6= f (E[x]).
The predicted effect for an “average observation” is therefore a bad estimate
of the population average effect (Hanmer and Kalkan 2012). Not to mention
that, depending on the distribution of the covariates, there may be no actual
observation that resembles the contrived average.

Our goal now is to get estimates of population average effects (or, less casually
causally, changes in conditional expectation) akin to what we would get from
a linear model. First imagine a continuous covariate X j. As we have already
seen, the estimated MCCE of X j for the i’th observation is

∂ P̂r(Yi = 1 | x i)
∂ x i j

= β̂ jΛ(x
>
i β̂)(1−Λ(x

>
i β̂)).

The estimated population average MCCE is then

β̂ j

N

N
∑

i=1

Λ(x>i β̂)(1−Λ(x
>
i β̂)).

5

If we can interpret the estimates causally, this is an estimate of the average
marginal effect of X j.

For a binary covariate X j, it makes more sense to work with first differences
than to take derivatives. Let the difference in predicted probability between
X j = 1 and X j = 0 for the i’th observation be

∆̂i j = Λ(x
>
i,− jβ̂− j + β̂ j)−Λ(x>i,− jβ̂− j).

Then we can estimate the population average first difference as

∆̂ j =
1
N

N
∑

i=1

∆̂i j.

What this estimates is: if we took an individual at random from the population,
then compared their probability of Yi = 1 with X j = 1 and X j = 0, what would
the difference be on average?

These formulas let us convert our hard-to-interpret logistic regression results
into quantities that we would interpret the same way as the corresponding OLS
coefficients. But doing all this work to get there once again raises the question:
why not just use a linear probability model in the first place? Admittedly, it is
unlikely that the “true” data-generating process is linear, given the considera-
tions I laid out before. But it is also unlikely that the “true” data-generating
process is a logistic regression, or a probit regression, or a cloglog or a scobit or
any of the other numerous binary response models—we’re always making an
approximation, and the approximation we choose has trade-offs. Sometimes
it is worth sacrificing a bit of fidelity for the sake of interpretability.

Inference

As I already mentioned, inference about coefficients is essentially no different
for logistic regression (and friends) than it is for OLS coefficients. Z tests for
individual coefficients (we don’t have finite-sample distributional results, so no
t tests), Wald tests for linear hypotheses about multiple coefficients.

If you want to estimate standard errors or confidence intervals for predicted
probabilities, pointwise MCCEs and first differences, or sample average MCCEs

6

and first differences, the easiest way is the “Clarify” (King, Tomz, and Witten-
berg 2000) method. Let g(β̂) denote your quantity of interest, as a function
of the estimated parameters. The procedure is as follows:

1. Draw B values from a multivariate normal distribution with mean β̂MLE

and variance Σ̂MLE

2. For each b = 1, . . . , B, calculate g(b) = g(β̂ (b)).

3. Estimate the standard error as the standard deviation of g(1), . . . , g(b).

4. Estimate confidence intervals as g(β̂MLE)±Zα×std.error, where Zα is the
Z-score associated with the α significance level.

Alternatively, estimate the confidence interval by taking the 100(α2) and
100(1− α

2) percentiles of g(1), . . . , g(b).

Summary

• Political scientists usually use logistic or probit regression to model binary
response variables.

• The assumptions of these models are better suited to binary data than
the linear model, but their parameters are harder to interpret on their
own.

• You can go through a lot of work to convert logistic/probit regression
coefficients into interpretable quantities of interest, or you can just run
a linear probability model.

Appendix: Maximum Likelihood Estimation

Consider the problem of estimating the coefficient vector β from the logistic
regression model,

Pr(Yi = 1 | x i) = Λ(x
>
i β).

As you know well by now, there are lots of potential estimators of β . Any
function of the sample data (Y,X) that yields a p × 1 vector is an estimator of
β . The problem is coming up with a good estimator.

7

The usual method of obtaining a good estimator for a nonlinear model is maxi-
mum likelihood. Loosely speaking, the goal of maximum likelihood estimation
is to find the set of parameters under which the probability of observing data
like ours is greatest. To do this, we set up the likelihood function: the probabil-
ity of observing our data, given a particular set of parameters.2 For example,
the likelihood function for logistic regression is

`(β |Y,X) =
∏

i:Yi=1

Λ(x>i β)
∏

i:Yi=0

(1−Λ(x>i β))

=
N
∏

i=1

�

YiΛ(x
>
i β) + (1− Yi)(1−Λ(x>i β))

�

Any value of β that maximizes `(β |Y,X) also maximizes the natural logarithm
of this expression, log`(β |Y,X). Because sums are easier to compute with than
products, we usually work with the log-likelihood function,

log`(β |Y,X) =
N
∑

i=1

�

YiΛ(x
>
i β) + (1− Yi)(1−Λ(x>i β))

�

The maximum likelihood estimator of the coefficients β of the logistic regres-
sion model is the solution to this maximization problem,

β̂MLE(Y,X) = argmax
β∈Rp

log`(β |Y,X).

Lest ye be concerned about multiplicity, the log-likelihood function is strictly
concave and thus has a unique maximizer, so the estimator is well-defined.

Unlike the OLS or WLS estimators of the linear regression parameters, there
is no closed-form expression for the MLE estimator of the logistic regression
parameters. In practice, we use iterative computational methods to find an
approximate solution to the maximization problem above. These methods are
beyond the scope of this class, but are implemented via the R function optim()
and in the maxLik package.

Under certain reasonable regularity conditions I won’t detail here, maximum
likelihood estimators have good asymptotic properties:

2With continuous outcomes, the likelihood function is instead the density of the observed
outcomes, given a particular set of parameters.

8

• Consistency.
• Asymptotic normality.
• Asymptotic efficiency: no other consistent estimator has lower asymp-

totic variance.
• Invariance: if β̂ is a maximum likelihood estimator of β , then f (β̂) is a

maximum likelihood estimator of f (β).

The finite-sample properties are generally unknown, though. In particular,
maximum likelihood estimators may be biased, though the bias disappears as
the sample size grows large enough.

The usual standard error estimates that you get from maximum likelihood pro-
cedures are derived from an approximation to the asymptotic variance. This
means you should be very wary of the standard error estimates from a maxi-
mum likelihood procedure when your sample size is small, even more so when
you are estimating many parameters. In situations like this, you can employ
bootstrap or profile likelihood methods for better inferences; we will cover boot-
strapping later in the course, but profile likelihood is beyond the scope of Stat
II.

Appendix: Implementation

We’ll be using the following packages:

• erer for automatic estimation of average MCCEs and their standard er-
rors

• MASS for drawing from a multivariate normal distribution
• pscl for data on vote choices in 1992

library("erer")

library("MASS")

library("pscl")

Begin by loading up the data. We have a sample of 909 voters, and we are
interested in modeling a voter’s probability of voting for Ross Perot. We’ll need
to create a dummy variable for voting for Perot.

data(vote92)

head(vote92)

9

vote dem rep female persfinance natlecon clintondis bushdis

1 Bush 0 1 1 1 0 4.0804 0.102

2 Bush 0 1 1 0 -1 4.0804 0.102

3 Clinton 1 0 1 0 -1 1.0404 1.742

4 Bush 0 1 0 0 -1 0.0004 5.382

5 Clinton 0 0 1 0 -1 0.9604 11.022

6 Clinton 1 0 1 -1 -1 3.9204 18.662

perotdis

1 0.26

2 0.26

3 0.24

4 2.22

5 6.20

6 12.18

vote92$votePerot <- as.numeric(vote92$vote == "Perot")

We run logistic regressions in R with the glm() command, where GLM stands
for generalized linear model. The syntax of glm() is similar to that of lm(),
except that you must specify a family of models. For binary response models,
the relevant family is binomial(), specifically binomial(link = "logit")
for logit models and binomial(link = "probit") for probit models. Our
running example will be a logit of voting for Perot on three variables:

• Whether the respondent is a Republican
• Whether the respondent is female
• The respondent’s squared ideological distance from Perot

logit_perot <- glm(votePerot ~ rep + female + perotdis,

data = vote92,

family = binomial(link = "logit"))

summary(logit_perot)

##

Call:

glm(formula = votePerot ~ rep + female + perotdis, family = binomial(link = "logit"),

data = vote92)

##

Deviance Residuals:

Min 1Q Median 3Q Max

-0.803 -0.730 -0.647 -0.481 2.370

10

##

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.0353 0.1583 -6.54 6.1e-11

rep 0.0946 0.1699 0.56 0.5774

female -0.3950 0.1703 -2.32 0.0203

perotdis -0.1080 0.0380 -2.85 0.0044

##

(Dispersion parameter for binomial family taken to be 1)

##

Null deviance: 913.05 on 908 degrees of freedom

Residual deviance: 896.50 on 905 degrees of freedom

AIC: 904.5

##

Number of Fisher Scoring iterations: 4

We had no especially good reason to run a logit, so we could also run a probit.

probit_perot <- update(logit_perot,

family = binomial(link = "probit"))

summary(probit_perot)

##

Call:

glm(formula = votePerot ~ rep + female + perotdis, family = binomial(link = "probit"),

data = vote92)

##

Deviance Residuals:

Min 1Q Median 3Q Max

-0.798 -0.733 -0.644 -0.484 2.377

##

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.6500 0.0920 -7.07 1.6e-12

rep 0.0588 0.0977 0.60 0.5475

female -0.2224 0.0967 -2.30 0.0214

perotdis -0.0565 0.0203 -2.78 0.0055

##

(Dispersion parameter for binomial family taken to be 1)

##

Null deviance: 913.05 on 908 degrees of freedom

11

Residual deviance: 896.99 on 905 degrees of freedom

AIC: 905

##

Number of Fisher Scoring iterations: 4

Notice that the coefficients and standard errors are different, but the Z statistics
are almost identical. This is typical: it is rare for a logit model and a probit
model to give you substantively different results from the same data.

We can calculate the “predicted probabilities” for the data used to fit the model
with the predict() command. We must specify type = "response" to get the
predicted probability Λ(x>i β̂); the default just gives us the “linear link” x>i β̂ .

pp_obs <- predict(logit_perot, type = "response")

quantile(pp_obs)

0% 25% 50% 75% 100%

0.0603 0.1650 0.2036 0.2567 0.2756

We can also use predict() for out-of-sample or hypothetical predictions. To
do that, we construct a data frame with the same covariates as we used to fit
the model, then feed it to the newdata argument of predict(). For example,
let’s do the traditional predicted probability exercise with ideological distance,
varying it across its observed range while holding the other covariates at their
medians.

vote92_contrived <- data.frame(

perotdis = seq(min(vote92$perotdis),

max(vote92$perotdis),

length.out = 100),

rep = median(vote92$rep),

female = median(vote92$female)

)

pp_contrived <- predict(logit_perot,

newdata = vote92_contrived,

type = "response")

We can now look at how the predicted probability of voting for Perot varies
with ideological distance from Perot. Shockingly, those closer to him are more
likely to vote for him.

12

plot(vote92_contrived$perotdis,

pp_contrived,

type = "l")

0 2 4 6 8 10 12

0.
10

0.
15

0.
20

0.
25

vote92_contrived$perotdis

pp
_c

on
tr

iv
ed

We can also calculate the MCCE (or marginal effect) of ideological distance for
each voter in the dataset. Remember that the MCCE of ideological distance de-
pends on the individual’s baseline probability of voting for Perot, being greatest
when the baseline probability is closest to 0.5.

beta_perotdis <- coef(logit_perot)["perotdis"]

mcce_perotdis <- beta_perotdis * pp_obs * (1 - pp_obs)

range(mcce_perotdis)

[1] -0.02157 -0.00612

mean(mcce_perotdis)

[1] -0.0171

For binary covariates, we can calculate average first differences. We’ll take each
observation in the dataset, set female to 1 while holding all other covariates
fixed, set female to 0 while holding all else fixed, and calculate the average
difference in predicted probabilities.

13

vote92_male <- vote92_female <- vote92

vote92_male$female <- 0

vote92_female$female <- 1

pp_male <- predict(logit_perot,

newdata = vote92_male,

type = "response")

pp_female <- predict(logit_perot,

newdata = vote92_female,

type = "response")

range(pp_female - pp_male)

[1] -0.0716 -0.0267

mean(pp_female - pp_male)

[1] -0.062

Estimating the standard errors of MCCEs by hand is a bit tougher. We’ll take
the following steps:

1. Draw B new values of β̂ from the estimated sampling distribution of β .
We’ve done this before, using mvrnorm().

2. Calculate the sample average MCCE for each value of β̂ (b). Unfortu-
nately, we can’t use the predict() function for this part3 — we’ll need
to calculate the predicted probabilities by hand.

3. Take the standard deviation across our B estimated sample average MC-
CEs.

Draw betas from estimated sampling distribution

n_sim <- 100

beta_dist <- mvrnorm(n_sim,

mu = coef(logit_perot),

Sigma = vcov(logit_perot))

Construct an n_obs x n_sim matrix whose ij’th entry is the

predicted probability of observation i under coefficients j

X <- model.matrix(logit_perot)

3You might be able to trick R by switching out the $coefficients element of logit_perot
with each row of the matrix you draw from mvrnorm(), but I wouldn’t want to say for sure.

14

Xb <- X %*% t(beta_dist)

Xb <- exp(Xb) / (1 + exp(Xb))

dim(Xb)

[1] 909 100

Calculate the average of p (1 - p) for each set of coefficients

var_average <- colMeans(Xb * (1 - Xb))

Multiply with the corresponding coefficient to get the estimated

average MCCE for each set of coefficients

mcce_dist <- var_average * beta_dist[, "perotdis"]

Standard error

sd(mcce_dist)

[1] 0.00672

Confidence interval

mean(mcce_perotdis) + c(-1.96, 1.96) * sd(mcce_dist)

[1] -0.0302 -0.0039

quantile(mcce_dist, probs = c(0.025, 0.975))

2.5% 97.5%

-0.02945 -0.00287

Fortunately, there is a function maBina() in the erer package that automates
the process of calculating average marginal effects and first differences, along
with their standard errors. It requires that the original glm() be run with the
argument x = TRUE (which tells glm() to save the design matrix X as part of
the output). The argument x.mean = FALSE tells it to calculate the observa-
tionwise average instead of holding the covariates at their means.

logit_perot <- update(logit_perot, x = TRUE)

maBina(logit_perot, x.mean = FALSE)

effect error t.value p.value

(Intercept) -0.164 0.023 -7.125 0.000

rep 0.015 0.027 0.555 0.579

female -0.062 0.026 -2.347 0.019

15

perotdis -0.017 0.006 -2.895 0.004

maBina() automatically knows to compute first differences instead of first deriva-
tives for binary covariates, though there’s an argument to turn off this behavior
if you reeeeeally want to. Notice that the average MCCE of ideological distance
and average first difference of female are the same as what we calculated by
hand. However, the estimated standard errors differ—that’s because maBina()
uses an analytical approximation instead of the simulation approach.

NOTE: I have not vetted this package carefully. Its author has not written other
packages I am familiar with. I have looked at the code, and I suspect (but
am not sure) it will not give you the right MCCEs for variables with higher-
order terms included. As with any package that is not part of base R, use with
caution!

If you just want predicted probabilities and their confidence intervals, the Zelig
package makes it easy to get them. But you don’t want predicted probabilities—
you want marginal effects.

References

Hanmer, Michael J., and Kerem Ozan Kalkan. 2012. “Behind the Curve: Clar-
ifying the Best Approach to Calculating Predicted Probabilities and Marginal
Effects from Limited Dependent Variable Models.” American Journal of Political
Science 57 (1): 263–77. http://dx.doi.org/10.1111/j.1540-5907.2012.
00602.x.

King, Gary, Michael Tomz, and Jason Wittenberg. 2000. “Making the Most
of Statistical Analyses: Improving Interpretation and Presentation.” Ameri-
can Journal of Political Science 44 (2): 341–55. http://gking.harvard.edu/
files/making.pdf.

16

http://dx.doi.org/10.1111/j.1540-5907.2012.00602.x
http://dx.doi.org/10.1111/j.1540-5907.2012.00602.x
http://gking.harvard.edu/files/making.pdf
http://gking.harvard.edu/files/making.pdf

