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From the amount of attention heteroskedasticity receives in graduate statistical
modeling courses—including this one!—you would think it is a dire problem
for statistical inference. It isn’t.1 It probably doesn’t rank among the top 10.
Nonetheless, your future advisors and reviewers will expect you to be familiar
with heteroskedasticity and the methods for dealing with it, so today’s goal is
to make sure you’re well equipped.

Note: Much of the material in these notes comes from Greene (2003, chaps.
10–11).

What Is Heteroskedasticity?

Heteroskedasticity is when the variance of the error term, or the residual vari-
ance, is not constant across observations. Graphically, it means the spread of
points around the regression line is variable.

x <- rnorm(250)

y <- 1 + x + rnorm(250, sd = abs(x))

plot(x, y, main = "Heteroskedasticity")

1I think maybe people get fixated on it because it’s got an imposing name. I mean, het-
eroskedasticity, right? You tell your drunk uncles you study public opinion, and they’ll proba-
bly start talking about how Donald Trump is going to Make America Great Again. But you tell
them you’re working on overcoming heteroskedasticity and they’ll shuffle off to another room
real fast.
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Under homoskedasticity, we have V [εi | x i] = σ2, a constant, for all i = 1, . . . , N .
Under heteroskedasticity, this no longer holds; we have V [εi | x i] 6= V [ε j | x j]
for some i, j. If we continue to assume that there is no autocorrelation—that
the covariance of each pair of distrinct εi and ε j is 0—then we can write the
variance matrix of the vector ε as

V [ε |X] =









σ2
1 0 · · · 0

0 σ2
2 · · · 0

...
...

. . .
...

0 0 · · · σ2
N









= σ2









ω1 0 · · · 0
0 ω2 · · · 0
...

...
. . .

...
0 0 · · · ωN









= σ2Ω.

Why Do We Care?

You will sometimes hear it said, even by people who ought to know better, that
“homoskedasticity is one of the OLS assumptions”. This is nonsense on a stick.
It’s like saying “one of the assumptions of pants is that you have legs”. Pants are
pants regardless of your appendages, though it may or may not be a good idea
for you to wear them. Analogously, OLS is just a statistic—a function of your

2



sample data. The only “assumption” is that X has rank p, because otherwise
X>X isn’t invertible and the OLS estimate is ill-defined.

So is it a bad idea to use OLS in the presence of heteroskedasticity? To put it
more precisely, do the OLS properties we like break down in the presence of
heteroskedasticity? Let’s check in on them.

• Unbiasedness: Nope, OLS is unbiased regardless. You can verify this
yourself: we proved its unbiasedness in class, and the only thing we
assumed about the errors was E[εi | x i] = 0.

• Consistency: Under reasonable technical conditions I won’t get into here
(look at Greene or any other graduate-level econometrics textbook if
you’re curious), OLS is still consistent in the presence of heteroskedas-
ticity.

• Asymptotic normality: Ditto.
• Efficiency: Aha! If you carefully read the Gauss-Markov Theorem, as

I’m sure you did, you remember that it depends on the assumption that
V [εi | x i] = σ2, a constant, for all x i. We didn’t assume this just for fun. If
the errors are heteroskedastic, then there is an unbiased linear estimator
with a lower variance than OLS. The problem is, to use that estimator, we
must know each individual error variance up to a multiplicative constant.
In other words, we must know Ω. We usually don’t. So there’s a more
efficient estimator out there, but we’re unlikely to know what it is.

In sum, the OLS estimator is unbiased, consistent, and asymptotically normal
despite heteroskedasticity. It is inefficient, but the optimal estimator may be
unavailable to us. It sounds like heteroskedasticity is not such a big problem.
It isn’t—unless we want to draw inferences and test hypotheses.

Let us briefly remember some Important Things about Statistics. The standard
error is the standard deviation of the sampling distribution of a statistic. We
like estimators with low standard errors because it is easier to draw inferences
from them—the estimates are less prone to fluctuate due to sampling variation.
But we almost never know the true standard error of an estimator, so we have
to estimate it. (Yo dawg, I heard you like estimators, so. . . )

Under homoskedasticity, the variance matrix of the OLS estimator (treating the
covariates X as fixed) is

Σ= V [β̂OLS(Y,X) |X] = σ2(X>X)−1.

3

01-important-things.html


The typical estimate of this variance matrix is

Σ̂OLS =

∑N
i=1 ê2

i

N − p
(X>X)−1,

where êi is the residual of the i’th observation under the OLS estimate. This is
what R spits out when you run summary(lm(y ~ ...)). Under homoskedas-
ticity, this is an unbiased and consistent estimator of the true variance matrix.
With heteroskedasticity, however, Σ̂OLS is biased and inconsistent. If we go
ahead and use it to calculate inferential statistics, our measures of uncertainty
will be misleading. Typically, we will too readily reject the null hypothesis—our
reported p-values will be understated.

To sum up, although heteroskedasticity doesn’t cause much of a problem for
the OLS estimate of β itself, it does throw a wrench into our efforts to draw
inferences about β from the OLS estimate. We are left with two options:

1. Use an estimator other than OLS.
2. Make a correction to the estimated standard errors that accounts for the

possibility of heteroskedasticity.

These correspond, respectively, to the cases when the heteroskedasticity is of
known and unknown form. But first we should know how to infer whether
there’s heteroskedasticity at all.

Detecting Heteroskedasticity

In a bivariate regression model, you can usually detect heteroskedasticity via
the eye test. Not so much when you have multiple covariates. In this case, you
may want to formally test for heteroskedasticity.

There are a few such tests, but we will just look at the Breusch-Pagan test,
which was developed by Breusch and Pagan (1980) and refined by Koenker
and Bassett (1982). The null hypothesis of the test is that σ2

i = σ
2 for all

i = 1, . . . , N . The test procedure is as follows.

1. Calculate the OLS estimate, β̂OLS.
2. Calculate the OLS residuals, ê = Y−Xβ̂OLS. Let û be the vector of squared

residuals, û= (ê2
1, . . . , ê2

N ).
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3. Run a regression of û on Z, an N × q matrix of covariates. Let R2
û denote

the R2 of this regression.
4. Reject the null hypothesis if NR2

û exceeds the critical value for a χ2
q−1

distribution.

In the canonical version of this test, Z is equal to X. A more powerful version
is the White test (White 1980), in which Z contains each variable in X as well
as all second-order terms (squares and interactions).

To illustrate this test—and our upcoming solutions—we will use data from the
car package on professors’ salaries. This is a topic that, hopefully, you will
come to care about rather much in 5ish years.

library("car")

data(Salaries)

head(Salaries)

## rank discipline yrs.since.phd yrs.service sex salary

## 1 Prof B 19 18 Male 139750

## 2 Prof B 20 16 Male 173200

## 3 AsstProf B 4 3 Male 79750

## 4 Prof B 45 39 Male 115000

## 5 Prof B 40 41 Male 141500

## 6 AssocProf B 6 6 Male 97000

There is an obvious source of heteroskedasticity here. We should expect much
more variation in the salaries of faculty who’ve been around for a while than
for those fresh out of grad school.

library("ggplot2")

ggplot(Salaries, aes(x = yrs.since.phd, y = salary)) +

geom_point()

5



50000

100000

150000

200000

0 20 40
yrs.since.phd

sa
la

ry

Let’s regress salary on years since PhD and years of service, and use the Breusch-
Pagan test to confirm what we already know about heteroskedasticity. We’ll use
the bptest() function from the lmtest package.

ols_salaries <- lm(salary ~ yrs.since.phd + yrs.service,

data = Salaries)

summary(ols_salaries)

##

## Call:

## lm(formula = salary ~ yrs.since.phd + yrs.service, data = Salaries)

##

## Residuals:

## Min 1Q Median 3Q Max

## -79735 -19823 -2617 15149 106149

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 89912 2844 31.62 < 2e-16

## yrs.since.phd 1563 257 6.09 2.8e-09

## yrs.service -629 254 -2.47 0.014

##
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## Residual standard error: 27400 on 394 degrees of freedom

## Multiple R-squared: 0.188, Adjusted R-squared: 0.184

## F-statistic: 45.7 on 2 and 394 DF, p-value: <2e-16

library("lmtest")

bptest(ols_salaries)

##

## studentized Breusch-Pagan test

##

## data: ols_salaries

## BP = 50, df = 2, p-value = 1e-11

By default, bptest() uses the same variables as in the original regression in
the regression of the squared residuals. To perform the White test, we can use
an extra argument to bptest() to specify a different model formula.

bptest(ols_salaries,

~ yrs.since.phd * yrs.service + I(yrs.since.phd^2) + I(yrs.service^2),

data = Salaries)

##

## studentized Breusch-Pagan test

##

## data: ols_salaries

## BP = 60, df = 5, p-value = 1e-11

In this case, regardless of which test we use, we reject the null hypothesis of
homoskedasticity.

Heteroskedasticity of Known Form

Suppose we know the form ofΩ up to a multiplicative constant. In other words,
we know that the variance of each εi is proportional to some constant ωi > 0.
In this lucky circumstance, there is an efficient estimator of β available to us—
the weighted least squares, or WLS, estimator.

The principle behind WLS is that observations with lower residual variance
should receive more weight in the estimation of β . The more that each re-
sponse observation Yi is expected to deviate from the true regression line, the
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less useful that observation is for estimating the slope of that line—the harder
it is to separate the signal from the noise.

Let us now formally define the WLS estimator. We will collect the proportional
variance of each error term in an N × 1 vector, ω = (ω1, . . . ,ωN ). We will
weight every observation by the inverse of the proportional standard deviation,
dividing both the response and the covariates (including the constant term) by
the corresponding

p
ωi. Then we will run OLS on the weighted data. Formally,

the estimator is

β̂WLS(Y,X,ω) = β̂OLS

















Y1/
p
ω1

Y2/
p
ω2

...
YN/
p
ωN









,









x11/
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ω1 x12/
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It turns out this is equivalent to

β̂WLS(Y,X,ω) = (X>Ω−1X)−1X>Ω−1Y,

where Ω, as before, is the matrix with ω along the diagonal and 0 everywhere
else. Notice that OLS is a special case of WLS, with ω= (1, 1, . . . , 1). Just like
OLS, WLS is unbiased and (under reasonable conditions) consistent, even if Ω
is misspecified. But if we haveΩ right—and only if we haveΩ right—then WLS
is efficient in the class of linear unbiased estimators. In addition, our estimated
variance matrix,

Σ̂WLS =

∑N
i=1 ê2

i /ωi

N − p
(X>Ω−1X)−1,

is unbiased and consistent.

As an example, let’s run WLS on the professor salary data, under the assump-
tion that the residual variance is proportional to years since PhD:

V [εi | x i] = σ
2 × (Years Since PhD)i.

We can accomplish this using the weights argument of lm().

wls_salaries <- lm(salary ~ yrs.since.phd + yrs.service,

weights = 1 / yrs.since.phd,

data = Salaries)

summary(wls_salaries)
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##

## Call:

## lm(formula = salary ~ yrs.since.phd + yrs.service, data = Salaries,

## weights = 1/yrs.since.phd)

##

## Weighted Residuals:

## Min 1Q Median 3Q Max

## -13520 -4386 -91 4101 16046

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 79672 1460 54.56 < 2e-16

## yrs.since.phd 1753 242 7.25 2.3e-12

## yrs.service -289 265 -1.09 0.28

##

## Residual standard error: 5760 on 394 degrees of freedom

## Multiple R-squared: 0.427, Adjusted R-squared: 0.425

## F-statistic: 147 on 2 and 394 DF, p-value: <2e-16

Compared to the OLS estimates, we now estimate a stronger relationship be-
tween years since the PhD and the expected value of a professor’s salary. In
addition, we estimate a smaller coefficient on years of service, and would no
longer reject the null hypothesis of no relationship.

Are the WLS results better than the OLS results? It depends—namely on
whether our assumption that the residual variance is proportional to the num-
ber of years since PhD. If our assumption is correct, then the WLS estimates
are efficient and our estimated standard errors are valid. But if we assumed
incorrectly, then the coefficient estimates might be even less efficient than OLS,
and the estimated standard errors might be even more biased.

Heteroskedasticity of Unknown Form

Suppose we don’t trust ourselves to conjure up the right proportional residual
variances, theωis.

2 Then we do not have an efficient estimator of β . We might

2There is an in-between solution known as feasible generalized least squares, whereby we
estimate Ω from the data. We won’t discuss FGLS in this course, but you can read about it in
Wooldridge or virtually any other econometrics textbook.
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be all right with that, but we would really like to have a good estimator for the
standard errors of the OLS estimator, so that we can test hypotheses about the
coefficients. Happily, we can estimate the variance matrix of the OLS estimator
consistently even in the presence of heteroskedasticity.

White’s heteroskedasticity-consistent estimator (White 1980) of the variance ma-
trix starts by forming a diagonal matrix out of the squared residuals,

Û=









û1 0 · · · 0
0 û2 · · · 0
...

...
. . .

...
0 0 · · · ûN









=









ê2
1 0 · · · 0

0 ê2
2 · · · 0

...
...

. . .
...

0 0 · · · ê2
N









This lets us form the “meat” of the “sandwich” that is White’s estimator of
Σ= V [β̂OLS |X]:

Σ̂HC = (X
>X)−1X>ÛX(X>X)−1.

You know I love proofs, but I am not even going to attempt to prove that this
consistently estimates the (asymptotic) variance matrix of β̂OLS. See Greene
(2003, 198–99) for a sketch of the proof.

White’s estimator is consistent but not unbiased, so we may want to apply
a sort of bias correction in small samples. A popular choice is the so-called
“HC1” estimator, which corrects for the number of parameters estimated the
same way the usual OLS variance estimator does:

Σ̂HC1 =
N

N − p
Σ̂HC

In this scheme, the standard White estimator is called the “HC” or “HC0” es-
timator. There are many other consistent estimators that apply some or other
finite-sample correction; see MacKinnon and White (1985) for the gory details.

Because of its association with the , robust option in Stata, people some-
times call the White estimator of the standard errors “robust standard errors”.
Don’t do that. In your own work, if you estimate and report heteroskedasticity-
consistent standard errors, report that you use the White (1980) estimator of
the standard errors, and specify which variant (HC0, HC1, and so on). Re-
member that your goal is to give others enough information to replicate your
analysis even if they don’t have your code—“robust standard errors” has too
many interpretations to accomplish that.
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To calculate the White estimator and its friends in R, we use the hccm() func-
tion from the car package.3

vcv0 <- hccm(ols_salaries, type = "hc0")

vcv0

## (Intercept) yrs.since.phd yrs.service

## (Intercept) 5809137 -340724 111808

## yrs.since.phd -340724 77168 -75508

## yrs.service 111808 -75508 91091

To create a “regression table” using our new “robust” standard errors, we can
use the coeftest() function from the lmtest package.

coeftest(ols_salaries)

##

## t test of coefficients:

##

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 89912 2844 31.62 < 2e-16

## yrs.since.phd 1563 257 6.09 2.8e-09

## yrs.service -629 254 -2.47 0.014

coeftest(ols_salaries, vcov = vcv0)

##

## t test of coefficients:

##

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 89912 2410 37.30 < 2e-16

## yrs.since.phd 1563 278 5.63 3.5e-08

## yrs.service -629 302 -2.08 0.038

Just like ordinary regression tables, the ones made by coeftest() can be
“swept” into data frames using the tools in broom:

library("broom")

tidy(coeftest(ols_salaries, vcov = vcv0))

## term estimate std.error statistic p.value

3The vcovHC() function in the sandwich package produces the same results but is a bit
more flexible. It can also be used for generalized linear models (e.g., logistic regression).
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## 1 (Intercept) 89912 2410 37.30 2.33e-131

## 2 yrs.since.phd 1563 278 5.63 3.50e-08

## 3 yrs.service -629 302 -2.08 3.78e-02

You may also want to use the White-estimated standard errors to conduct Wald
tests of linear hypotheses. You can do that by supplying the relevant estimated
variance matrix to the vcov argument of linearHypothesis():

linearHypothesis(ols_salaries,

c("yrs.since.phd = 1500"),

vcov = vcv0,

test = "Chisq")

## Linear hypothesis test

##

## Hypothesis:

## yrs.since.phd = 1500

##

## Model 1: restricted model

## Model 2: salary ~ yrs.since.phd + yrs.service

##

## Note: Coefficient covariance matrix supplied.

##

## Res.Df Df Chisq Pr(>Chisq)

## 1 395

## 2 394 1 0.05 0.82

Finally, remember how earlier we talked about how the WLS estimates are
only as good as the weights you choose. If they’re not the true weights, then
WLS is not efficient and the standard error estimator is inconsistent. We can’t
fix the first problem, but we can fix the second. To wit, you can estimate
heteroskedasticity-consistent standard errors for WLS models too.

vcv0_wls <- hccm(wls_salaries, type = "hc0")

coeftest(wls_salaries, vcov = vcv0_wls)

##

## t test of coefficients:

##

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 79672 1474 54.06 < 2e-16
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## yrs.since.phd 1753 245 7.16 3.9e-12

## yrs.service -289 272 -1.06 0.29

So if you have a good idea about the residual variances but aren’t sure you’ve
nailed it down, you can have the best of both worlds—at least in terms of
large-sample hypothesis testing.

Summary

• Heteroskedasticity doesn’t affect the properties of the OLS estimator of
β very much.

• But it does cause inefficiency and, even worse, break the ordinary esti-
mator of the standard errors of β̂OLS.

• If we know the form of the heteroskedasticity, we can fix both of these
problems with WLS.

• If we don’t know the form of the heteroskedasticity, we can at least con-
sistently estimate the standard errors of β̂OLS via White’s estimator.
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