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In the Reintroduction to Linear Regression, we talked about the linear model,

Yi = x>i β + εi,

and how to estimate its parameters β via ordinary least squares. It is not
necessary that the model be linear in the covariates. The OLS estimator retains
its nice properties as long as the model is linear in the parameters. For example,

Yi = β0 + β1 x i1 + β2 x2
i1 + εi

is linear in the parameter vector β but not in the covariate x i1. The OLS esti-
mator of β is still unbiased, consistent, and all that jazz. But if your model is
a nonlinear function of the parameters, such as

Yi = β0 + xβ1
i1 + xβ2

i2 + εi,

then the OLS estimator is no good. For a model like this, you would want to de-
rive an alternative estimator using maximum likelihood or another technique
beyond the scope of this course.

Today, we will focus on models of the first variety—those that are linear in
the parameters but not the covariates. We will talk mainly about models that
are polynomial functions of the covariates, of which interactive and quadratic
functions are special cases. We will cover:

• How to interpret the results of polynomial models.
• Why you should never leave out lower-order terms when including higher-

order terms.
• How to calculate standard errors and confidence intervals on estimated

marginal effects.
• How to test hypotheses about nonlinear relationships.
• Modeling nonlinearities of unknown form.

1

02-reintroduction.html


Specification and Interpretation

Let us begin by defining the quantity of interest. For the moment, assume we
are still in the world where the regression function is linear in the covariates
as well as the parameters. The coefficient on the j’th covariate is then equiv-
alent to the partial derivative of the regression function with respect to that
covariate:

∂ E[Yi | x i]
x i j

= β j.

As shorthand, I will call this derivative the marginal change in conditional ex-
pectation, or MCCE,1 with respect to the covariate x i j. People usually call this
the marginal effect of x i j, but that has a causal connotation that is not always
appropriate.

If the regression function is nonlinear in the covariates, then the MCCEs are
no longer constant, and the estimated coefficients can no longer be interpreted
on their own. For example, consider a model that is a quadratic function of a
single covariate, Wi:

Yi = β0 + β1Wi + β2W 2
i + εi.

The MCCE changes depending on the value of Wi:

∂ E[Yi |Wi]
∂Wi

= β1 + 2β2Wi.

Let’s look at the conditional expectation function with β = (1,−2, 1).

W <- seq(-1, 3, by = 0.1)

E_Y <- 1 - 2 * W + W^2

plot(W, E_Y, type = "l")

1MCCE is my own terminology, so don’t expect people to be familiar with the acronym if
you mention changes in conditional expectation in the papers you write.
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The MCCE is negative for W < 1 and positive for W > 1, and its magnitude
grows as W gets farther away from 1.

The interactive model is similar. Consider the regression function

Yi = β0 + βW Wi + βZ Zi + βW ZWi Zi + εi.

The MCCEs with respect to Wi and Zi are

∂ E[Yi |Wi, Zi]
∂Wi

= βW + βW Z Zi,

∂ E[Yi |Wi, Zi]
∂ Zi

= βZ + βW ZWi.

So now the MCCE of each variable depends on the value of the other—we are
modeling conditional effects. In the special case where Zi is a binary variable,
we have the varying slopes model:

∂ E[Yi |Wi, Zi = 0]
∂Wi

= βW ,

∂ E[Yi |Wi, Zi = 1]
∂Wi

= βW + βW Z .

When you estimate an interactive model, you should always include the lower-
order terms in the regression. In other words, if you include Wi Zi, then you
should also include Wi and Zi individually.

To see why, suppose you were to include Wi and Wi Zi but not Zi. This amounts
to fixing βZ = 0, so the MCCE with respect to Zi is

∂ E[Yi |Wi, Zi]
∂ Zi

= βW ZWi.
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Consequently, the MCCE with respect to Zi is a line through the origin: it equals
zero whenever Wi = 0. This is a restriction that is never sensible to impose—so
don’t do it.

Let’s run through a couple of examples of calculating MCCEs to interpret the
results. We’ll be using data from the car package, which also has some handy
hypothesis testing tools that we’ll use later today.

library("car")

library("dplyr")

library("ggplot2")

We will use the Prestige dataset, which records the perceived prestige of var-
ious jobs in Canada in the early 1970s. To begin with, we’ll model the rela-
tionship between a profession’s income and its prestige.

data(Prestige)

head(Prestige)

## education income women prestige census type

## gov.administrators 13.1 12351 11.16 68.8 1113 prof

## general.managers 12.3 25879 4.02 69.1 1130 prof

## accountants 12.8 9271 15.70 63.4 1171 prof

## purchasing.officers 11.4 8865 9.11 56.8 1175 prof

## chemists 14.6 8403 11.68 73.5 2111 prof

## physicists 15.6 11030 5.13 77.6 2113 prof

Prestige <- mutate(Prestige, income = income / 1000)

ggplot(Prestige, aes(x = income, y = prestige)) +

geom_point()
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Notice that the conditional expectation function does not appear perfectly lin-
ear. After about $10,000, higher incomes do not appear to be associated with
higher prestige. We will try to capture this with a quadratic model.2

When fitting quadratic models, people accustomed to Stata like to create a new
“squared” variable in their data frame and then include it in the regression
formula. Don’t do that. Instead, include I(xˆ2) as a term in your regression
formula, where x is the name of the variable you want to include.

fit_quadratic <- lm(prestige ~ income + I(income^2), data = Prestige)

fit_quadratic

##

## Call:

## lm(formula = prestige ~ income + I(income^2), data = Prestige)

##

## Coefficients:

## (Intercept) income I(income^2)

## 14.183 6.154 -0.143

Let’s interpret the results by calculating the MCCE with respect to income.

2A piecewise linear model with a breakpoint around $10,000 of income is probably more
sensible, but it wouldn’t help us estimate and interpret quadratic models.
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beta_income <- coef(fit_quadratic)["income"]

beta_income_2 <- coef(fit_quadratic)["I(income^2)"]

Prestige <- Prestige %>%

mutate(MCCE_income = beta_income + 2 * beta_income_2 * income)

ggplot(Prestige, aes(x = income, y = MCCE_income)) +

geom_point() +

geom_hline(yintercept = 0, linetype = 2)
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For very low-earning jobs, we would expect an extra $1,000 in income to cor-
respond to about a 6-point increase in the prestige score. For middle-income
jobs, around $10,000, an extra $1,000 would be associated with a 3- or 4-point
increase. For extremely high-earning jobs, we estimate that further income is
actually associated with lower prestige.

Now let’s look at an interactive model. We will now model prestige as a func-
tion of education and income, including the interaction between them.

fit_interaction <- lm(prestige ~ education * income, data = Prestige)

fit_interaction

##

## Call:

## lm(formula = prestige ~ education * income, data = Prestige)

##

## Coefficients:
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## (Intercept) education income

## -22.070 5.373 3.944

## education:income

## -0.196

The coefficients here are a little easier to interpret than in the quadratic model.
We can see that the MCCE with respect to education decreases with income.
Let’s visualize education’s MCCE as a function of income.

beta_education <- coef(fit_interaction)["education"]

beta_education_income <- coef(fit_interaction)["education:income"]

Prestige <- Prestige %>%

mutate(MCCE_education = beta_education + beta_education_income * income)

ggplot(Prestige, aes(x = income, y = MCCE_education)) +

geom_point()
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So, suppose we were to compare two professions, both making almost no
money, where one requires an additional year of education on average. We
would expect the more-educated profession to have a prestige score about 5
points higher. But if we compared two professions with a one-year difference
in education, both making about $15,000, we would expect the more-educated
one to score only about 2.5 points higher in terms of prestige.
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Inference

There are two kinds of hypotheses we might want to test with a quadratic or
interactive model.

1. That the MCCE of Wi is zero at a particular value of Wi (for a quadratic
model) or of Zi (for an interactive model).

2. That the MCCE of Wi is always zero.

In a standard linear model with no higher-order terms, each MCCE is constant,
so these two hypotheses are equivalent. Not so in higher-order models.

Pointwise Hypotheses

To tackle the first type of hypothesis—the pointwise one—we will derive the
standard error of the MCCE at a particular point. We will use the following
formula for the variance of the weighted sum of two variables, where A and B
are random variables and c1 and c2 are real-valued constants:

V [c1A+ c2B] = c2
1 V [A] + c2

2 V [B] + 2c1c2Cov[A, B]

We will start with the standard error of the MCCE of a variable included with
its quadratic term. Remember that the formula for the MCCE is β1 + 2β2Wi,
where β1 and β2 are the coefficients on the main term and the quadratic term,
respectively. Its variance is therefore

V [β1 + 2β2Wi] = V [β1] + 4W 2
i V [β2] + 4WiCov[β1,β2]

In R, we can retrieve our estimates of these variances by running vcov() on a
fitted model object. Let’s calculate the standard error of the estimated MCCE
for each observation in the Prestige data, along with the associated confi-
dence intervals.

vcov(fit_quadratic)

## (Intercept) income I(income^2)

## (Intercept) 12.3585 -2.4828 0.089212

## income -2.4828 0.5765 -0.022422

## I(income^2) 0.0892 -0.0224 0.000987
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var_income <- vcov(fit_quadratic)["income", "income"]

var_income_2 <- vcov(fit_quadratic)["I(income^2)", "I(income^2)"]

covar_income_2 <- vcov(fit_quadratic)["income", "I(income^2)"]

Prestige <- Prestige %>%

mutate(var_MCCE = var_income +

4 * income^2 * var_income_2 +

4 * income * covar_income_2,

se_MCCE = sqrt(var_MCCE),

lower = MCCE_income - 2 * se_MCCE,

upper = MCCE_income + 2 * se_MCCE)

Now we can plot the estimated MCCE and its confidence interval as a function
of income.

ggplot(Prestige, aes(x = income, y = MCCE_income)) +

geom_ribbon(aes(ymin = lower, ymax = upper), fill = "gray70") +

geom_line() +

geom_rug(sides = "b")
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For an interactive model, the formula is slightly different. In that case, the
MCCE with respect to Wi depends on the value of Zi: βW + βW Z Zi. This gives
us a variance of

V [βW + βW Z Zi] = V [βW ] + Z2
i V [βW Z] + 2ZiCov[βW ,βW Z]
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Another approach to estimating the standard error of the MCCE at a particular
point is by simulation (King, Tomz, and Wittenberg 2000). The simulation-
based approach isn’t necessary in this case since we have a formula, but it
carries over nicely for more complex models (the kind you’ll see in Stat III)
where formulas are hard to derive. To estimate the standard error of the MCCE
at Wi by simulation, we will:

1. Draw m = 1, . . . , M values of β̃m from the estimated sampling distribu-
tion, a normal distribution with mean β̂ and variance matrix Σ̂.

2. For each β̃m, calculate the associated MCCE at Wi:

β̃m1 + 2β̃m2Wi.

3. Take the standard deviation of the M simulated MCCEs.

Let’s do this for the income level associated with the first observation in the
Prestige data. We’ll fire up the packages we need to draw from a multivariate
normal distribution and run loops.

library("foreach")

library("MASS")

We’ll draw M = 100 values of β̃m from the estimated sampling distribution.

n_sim <- 100

beta_sim <- mvrnorm(n_sim,

mu = coef(fit_quadratic),

Sigma = vcov(fit_quadratic))

head(beta_sim)

## (Intercept) income I(income^2)

## [1,] 13.7 6.13 -0.113

## [2,] 12.1 5.85 -0.102

## [3,] 10.8 6.44 -0.148

## [4,] 13.6 6.14 -0.143

## [5,] 14.6 5.80 -0.141

## [6,] 17.4 5.44 -0.115

Now, for each of these, we’ll calculate and save the associated MCCE.

MCCE_dist <- foreach (i = 1:n_sim, .combine = "c") %do% {

beta_sim[i, "income"] +
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2 * beta_sim[i, "I(income^2)"] * Prestige[1, "income"]

}

Let’s take the standard deviation of the simulation and compare it to the one
we calculated analytically.

sd(MCCE_dist)

## [1] 0.251

Prestige[1, "se_MCCE"]

## [1] 0.266

Not too far off! Again, this wasn’t the best way to do it—there’s no reason to
simulate what we can find with a simple formula—but it generalizes to more
complex models (or more complex functions of the coefficients) better than
the formulaic method. The simulation approach is also what the very help-
ful interplot package uses to calculate confidence intervals in automatically
generating plots like the one we made of MCCE_income.

Global Hypotheses

For better or worse, political scientists usually care mainly about null hypothe-
ses of the form, loosely speaking, “This variable ain’t got nothin’ to do with that
variable.” The pointwise calculations we just did don’t speak to hypotheses of
this form.

For a quadratic model, the null hypothesis that Wi has nothing to do with the
response can be stated as

H0: β1 = 0 and β2 = 0

For an interactive model, the null hypothesis that Wi has nothing to do with
the response can be stated as

H0: βW = 0 and βW Z = 0

Both of these are linear hypotheses. A linear hypothesis is a hypothesis of the
form

Rβ = q,
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where R is an r × p matrix and q is an r × 1 vector. For example, the matrix
version of the null hypothesis for the quadratic model would be

�

0 1 0
0 0 1

�





β0

β1

β2



=
�

0
0

�

The standard test for linear hypotheses like this is the Wald test (Greene 2003,
6.3.1). The test statistic is

W = (Rβ̂ − q)>(RΣ̂R>)−1(Rβ̂ − q).

Under the null hypothesis, the asymptotic distribution of W isχ2 with r degrees
of freedom.

The Wald test is not just an aggregation of the individual Z (or t) tests of the
coefficients. Two coefficients might each individually be statistically insignifi-
cant, yet the Wald test may lead us to reject the null hypothesis that both are
zero. Conversely, one of a group of coefficients might be statistically signifi-
cant, and yet the Wald test may not have us reject the null hypothesis that all
are zero.

As an instructive exercise, we will implement the Wald test ourselves in R. Then
we will see the easy way to do it.

R <- rbind(

c(0, 1, 0),

c(0, 0, 1)

)

q <- c(0, 0)

beta_hat <- coef(fit_quadratic)

Sigma_hat <- vcov(fit_quadratic)

Rbq <- R %*% beta_hat - q

RSR <- R %*% Sigma_hat %*% t(R)

W <- t(Rbq) %*% solve(RSR) %*% Rbq

W

## [,1]

## [1,] 146
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pchisq(W, df = nrow(R), lower.tail = FALSE)

## [,1]

## [1,] 1.91e-32

The easy way entails using the linearHypothesis() function from the car
package. You can supply the matrix of restrictions R and the vector of values
q directly to the function.

linearHypothesis(fit_quadratic,

hypothesis.matrix = R,

rhs = q,

test = "Chisq")

## Linear hypothesis test

##

## Hypothesis:

## income = 0

## I(income^2) = 0

##

## Model 1: restricted model

## Model 2: prestige ~ income + I(income^2)

##

## Res.Df RSS Df Sum of Sq Chisq Pr(>Chisq)

## 1 101 29895

## 2 99 12077 2 17819 146 <2e-16

Or, even easier, you can just write a vector of strings expressing your hypothesis
in terms of the relevant coefficient names. Let’s now test a composite null
hypothesis for education in the interactive model.

linearHypothesis(fit_interaction,

c("education = 0", "education:income = 0"),

test = "Chisq")

## Linear hypothesis test

##

## Hypothesis:

## education = 0

## education:income = 0

##
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## Model 1: restricted model

## Model 2: prestige ~ education * income

##

## Res.Df RSS Df Sum of Sq Chisq Pr(>Chisq)

## 1 100 14616

## 2 98 5641 2 8975 156 <2e-16

The Wald test can be used even for standard linear models. For example, imag-
ine that we model the response as a function of a categorical variable by includ-
ing dummy variables for each category. The null hypothesis that the variable
has no association with the expected value of the response is equivalent to the
coefficient on each dummy variable being zero.

Let’s do an example with a 20-category variable, where the null hypothesis is
true.

x <- rnorm(1000)

y <- 1 - x + rnorm(1000)

w <- sample(letters[1:20], size = 1000, replace = TRUE)

fit_dummy <- lm(y ~ x + w)

summary(fit_dummy)

##

## Call:

## lm(formula = y ~ x + w)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.389 -0.667 -0.008 0.687 3.171

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.1743 0.1340 8.76 <2e-16

## x -1.0176 0.0341 -29.88 <2e-16

## wb -0.3131 0.1964 -1.59 0.111

## wc -0.0998 0.1956 -0.51 0.610

## wd -0.1747 0.1954 -0.89 0.372

## we -0.1155 0.1944 -0.59 0.553

## wf -0.1390 0.2006 -0.69 0.489

## wg -0.4219 0.2128 -1.98 0.048

## wh -0.2894 0.2450 -1.18 0.238

14



## wi -0.3446 0.1964 -1.75 0.080

## wj -0.0647 0.2056 -0.31 0.753

## wk -0.4119 0.2198 -1.87 0.061

## wl -0.1354 0.2055 -0.66 0.510

## wm -0.2089 0.1902 -1.10 0.272

## wn -0.2168 0.1927 -1.13 0.261

## wo -0.1114 0.2042 -0.55 0.585

## wp -0.2388 0.1887 -1.27 0.206

## wq -0.0501 0.2055 -0.24 0.807

## wr -0.1517 0.1919 -0.79 0.429

## ws -0.1819 0.2056 -0.89 0.376

## wt -0.0338 0.1936 -0.17 0.861

##

## Residual standard error: 1.05 on 979 degrees of freedom

## Multiple R-squared: 0.485, Adjusted R-squared: 0.474

## F-statistic: 46.1 on 20 and 979 DF, p-value: <2e-16

hypotheses <- names(coef(fit_dummy))

hypotheses <- setdiff(hypotheses, c("(Intercept)", "x"))

hypotheses <- paste(hypotheses, "= 0")

linearHypothesis(fit_dummy,

hypotheses,

test = "Chisq")

## Linear hypothesis test

##

## Hypothesis:

## wb = 0

## wc = 0

## wd = 0

## we = 0

## wf = 0

## wg = 0

## wh = 0

## wi = 0

## wj = 0

## wk = 0

## wl = 0

## wm = 0

## wn = 0
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## wo = 0

## wp = 0

## wq = 0

## wr = 0

## ws = 0

## wt = 0

##

## Model 1: restricted model

## Model 2: y ~ x + w

##

## Res.Df RSS Df Sum of Sq Chisq Pr(>Chisq)

## 1 998 1083

## 2 979 1071 19 12.8 11.7 0.9
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