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This week is ostensibly about making inferences from regression results. I as-
sume by now you know the basics of testing hypotheses about OLS estimates:
divide the coefficient estimate by its estimated standard error and then consult
your Z tables (or t tables, if you’re into the whole normality thing).

Instead of deriving the asymptotic variance of the OLS estimator, we’re going
to talk about real-world problems of inference. I will try to convince you:

• Reported effects in scientific publications are systematically overestimated.
• Reported p-values in scientific publications are systematically underesti-

mated.
• The convention of only publishing significant results causes these prob-

lems. This practice is statistically ill-founded and encourages working
scientists to engage in unethical research practices.

• You should judge your own work and others’ on the basis of their research
design, not whether they yield significant results.

The Statistical Significance Filter

If you open up an issue of any empirically oriented political science journal,
you will not read many abstracts that conclude “We were unable to reject the
null hypothesis of no effect.” You probably won’t see any. The prevailing at-
titude of reviewers and editors is that only significant results are interesting
and only interesting results are worth publishing—so only significant results
get published.

Consequently, published empirical findings are not a representative sample of
all empirical findings. Andrew Gelman calls this the statistical significance filter:
the publication process only reveals the findings of some studies, namely those
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that achieve statistical significance. If you draw your beliefs from scientific
journals (particularly prestigious ones, as Ioannidis (2008) notes), you will
end up with some false ideas about how the world works.

Some of these beliefs will be Type I errors: you will reject null hypotheses that
are true. Suppose there is a treatment T that has no effect on an outcome Y ,
and 100 labs run separate experiments of the effect of T on Y . We would expect
about 95 of these experiments to (correctly) fail to reject the null hypotheses,
and about 5 to (incorrectly) reject it. But if some of the significant findings get
published and none of the insignificant ones do, you will end up incorrectly
believing the treatment affects the outcome.

But the statistical significance filter has another, less obvious—and thus more
pernicious—effect on our inferences. Assume that the null hypothesis is indeed
false: that the treatment T has an effect on the outcome Y . Suppose once again
that 100 labs run separate experiments of the effect of T on Y . Depending on
the power of the experiments (a crucial point we will revisit in a minute), some
proportion of them will (incorrectly) fail to reject the null hypothesis, and the
remainder will (correctly) reject it. Because of the statistical significance filter,
only the ones that reject the null hypothesis will get published.

That’s not so bad, right? Only the studies that reject the null hypothesis get
published, but the null hypothesis is wrong! The problem comes in when we
want to evaluate the size of the effect—what political scientists like to call
“substantive significance.”1 On average, the statistically significant studies will
tend to overestimate the magnitude of the effect. Viewing studies through the
statistical significance filter, we will correctly infer that there is an effect, but
we will systematically overestimate how strong it is.

The first time I read about this result, on Andrew Gelman’s blog, I didn’t be-
lieve it. (I should have believed it, because he’s a professional statistician and
I’m not.) So I fired up R and ran a simulation to answer: if we only report
our estimate of β j when it’s statistically significant, will we overestimate its
magnitude on average? Today we’ll run a version of that same simulation.

1Mini rant: In my admittedly short career in political science, I have seen zero talks or
papers claim to have found a statistically significant but substantively insignificant result. I
have, however, seen talks that claimed a 0.001% increase constituted a substantively significant
finding. Without a threshold for substantive significance that is decided on before the results
are obtained, any claim about substantive significance is incredible.
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I’ll begin by loading some useful packages. dplyr, foreach, and ggplot2 are
familiar by now. broom is a new one: we use it to “sweep” regression results
into easy-to-use data frames.

library("dplyr")

library("foreach")

library("ggplot2")

library("broom")

I’m going to assume there is a binary treatment T , with a 50-50 chance of
each observation being in the treatment or control group. The response Y is a
function of the treatment and random error,

Y = α+ βT + ε,

where ε∼ N(0,1).

Assume the sample size is N = 200 and the true parameters are α= 1 and β =
0.1. Let’s take 100 draws from the sampling distribution of the OLS estimator
of β and its associated p-value, one for each hypothetical lab running this
hypothetical experiment, each with a distinct set of 200 subjects. Remember
that we use the replicate() function to run the same operation repeatedly.

n_obs <- 200

alpha <- 1

beta <- 0.1

beta_hat_dist <- replicate(100, {

## Simulate data

treatment <- rbinom(n_obs, 1, 0.5)

response <- alpha + beta * treatment + rnorm(n_obs)

## Fit regression model and extract estimates related to the

## treatment variable

ols_fit <- lm(response ~ treatment)

ols_coef <- tidy(ols_fit) %>% filter(term == "treatment")

## Return the coefficient and the p-value on treatment

c(beta_hat = ols_coef$estimate,

p_value = ols_coef$p.value)

})
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replicate() returns the result of each iteration in a separate column, so let’s
take its transpose and turn it into a data frame.

dim(beta_hat_dist)

## [1] 2 100

beta_hat_dist <- as.data.frame(t(beta_hat_dist))

head(beta_hat_dist)

## beta_hat p_value

## 1 -0.029 0.8282

## 2 0.134 0.3206

## 3 0.207 0.1408

## 4 0.278 0.0313

## 5 0.139 0.2968

## 6 -0.218 0.1247

The OLS estimator is unbiased, so if we take the mean of our draws from the
sampling distribution, they should roughly equal the true value, β = 0.1.

beta_hat_dist %>%

summarise(e_beta_hat = mean(beta_hat))

## e_beta_hat

## 1 0.092

Yep. But now what if we split up the results by significant and insignificant?
Does the expected value of β̂ , conditional on it being statistically significant,
still equal the true value?

beta_hat_dist <- mutate(beta_hat_dist,

significant = p_value <= 0.05)

beta_hat_dist %>%

group_by(significant) %>%

summarise(count = n(),

e_beta_hat = mean(beta_hat))

## Source: local data frame [2 x 3]

##

## significant count e_beta_hat

## (lgl) (int) (dbl)
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## 1 FALSE 89 0.0675

## 2 TRUE 11 0.2895

Two things to notice here. First, the average estimate conditional on statistical
significance is overstated—about triple the true value. Second, the power is
pretty low. The null hypothesis is false, but we fail to reject it about 90% of
the time.

These two phenomena are related. Low power means we rarely reject the null
hypothesis—only for the most extreme estimates of the effect. So if we only
observe the estimate conditional on it being statistically significant, we’re only
seeing draws from the tail of the sampling distribution.

To see how power affects the bias induced by the statistical significance filter,
let’s run the same simulation for different values of β . The stronger the effect
of the treatment, the higher the signal-to-noise ratio and thus the greater the
power of the study. Let’s run this simulation for each β ∈ {0.2,0.3, 0.4,0.5}.

beta_seq <- seq(0.2, 0.5, by = 0.1)

n_obs <- 200

alpha <- 1

foreach (beta = beta_seq) %do% {

beta_hat_dist <- replicate(100, {

## Simulate data

treatment <- rbinom(n_obs, 1, 0.5)

response <- alpha + beta * treatment + rnorm(n_obs)

## Fit regression model and extract estimates related to the

## treatment variable

ols_fit <- lm(response ~ treatment)

ols_coef <- tidy(ols_fit) %>% filter(term == "treatment")

## Return the coefficient and the p-value on treatment

c(beta_hat = ols_coef$estimate,

p_value = ols_coef$p.value)

})

beta_hat_dist <- as.data.frame(t(beta_hat_dist))

beta_hat_dist <- mutate(beta_hat_dist,
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significant = p_value <= 0.05)

beta_hat_dist %>%

group_by(significant) %>%

summarise(count = n(),

e_beta_hat = mean(beta_hat))

}

## [[1]]

## Source: local data frame [2 x 3]

##

## significant count e_beta_hat

## (lgl) (int) (dbl)

## 1 FALSE 71 0.131

## 2 TRUE 29 0.346

##

## [[2]]

## Source: local data frame [2 x 3]

##

## significant count e_beta_hat

## (lgl) (int) (dbl)

## 1 FALSE 51 0.179

## 2 TRUE 49 0.402

##

## [[3]]

## Source: local data frame [2 x 3]

##

## significant count e_beta_hat

## (lgl) (int) (dbl)

## 1 FALSE 16 0.211

## 2 TRUE 84 0.454

##

## [[4]]

## Source: local data frame [2 x 3]

##

## significant count e_beta_hat

## (lgl) (int) (dbl)

## 1 FALSE 7 0.218

## 2 TRUE 93 0.519

6



The bigger the true effect, the greater the power of the hypothesis test, and
thus the more the sampling distribution conditional on statistical significance
comes to resemble the full sampling distribution. Unfortunately, the typical
setting in political science is the one where the statistical significance filter is
most severe. Nonzero but small relationships among variables are common in
political science, as are small sample sizes.

So the magnitudes of the estimates we see—the ones that make it past the
statistical significance filter—are biased toward overestimating effects. What
can we do about it?

• Assume the magnitudes of published results are exaggerated, and adjust
our own beliefs accordingly.

• Collect new data to replicate published findings, and adjust our beliefs
in the direction of the replication results.

• When writing our own papers, don’t throw results away just because
they’re “insignificant.”

• When reviewing others’ papers, don’t judge on the basis of significance.
Try to be “results-blind.” Assess whether the research design is well
suited to address the question at hand, not whether it turned up the
results the author wanted, or the results you want, or interesting or sur-
prising or counterintuitive results, etc.

p-Hacking

The statistical significance filter is a demand-side problem. The demand (by
journals) for “insignificant” findings is too low. This in turn creates supply-side
problems. Scientists’ careers depend on their ability to publish their findings.
Since there is no demand for insignificant findings, scientists do what they can
to conjure up significant results. In the best case scenario, this means devoting
effort to projects with a high prior probability of turning up significant, rather
than riskier endeavors. In the worst case, it means engaging in vaguely-to-
definitely unethical statistical practices in a desperate search for significance.

Let us once again imagine a lab performing an experiment. They are interested
in the effect of a treatment T on an outcome Y . To make it concrete, suppose
the treatment is reading a particular editorial, and the outcome is where the
respondent places himself or herself on a left-right ideological scale ranging
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between 0 and 1. The lab spends a lot of time and money recruiting subjects,
running the experiment, and tabulating the data. They get their spreadsheet
together, load their data into R, test for a treatment effect . . . and fail to reject
the null hypothesis.

Damn. All that effort wasted, for a result that can’t be published. But wait!
The op-ed was written by a man, and his picture appeared next to it. It seems
plausible that it might only have an effect on men, or only one on women. So
just to see, the lab re-runs the test once just for men and once just for women.
They get a p-value just below 0.05 for the male subsample! Hooray! This is at
least potentially a publishable finding!

What’s wrong with this picture? Let’s go back to the formal definition of the
significance level.

The significance level of a hypothesis test is the probability of re-
jecting the null hypothesis when the null hypothesis is true.

If the null hypothesis is true, and 100 labs run the same experiment on it, we
should expect about 5 of them to end up incorrectly rejecting the null hypoth-
esis. Similarly, go back to the formal definition of a p-value.

The p-value of a test statistic is the probability of yielding a test
statistic at least as extreme when the null hypothesis is true.

If the null hypothesis is true, we should expect only about 10 out of 100 labs
to end up with p ≤ 0.10, 5 out of 100 to have p ≤ 0.05, and so on.

The problem with this hypothetical procedure—testing post hoc for effects
within subgroups after the main test comes back insignificant—is that the
stated significance level is not the real significance level. If you run three
different tests and reject the null hypothesis if any of them comes back with
p ≤ 0.05, you will reject the null hypothesis more often than 5% of the time.
In our running hypothetical example, the lab’s reported p-value of 0.05 is a lie.

Let’s run a simulation to see exactly how often we reject a true null hypothesis,
assuming the response Y ∼ U[0,1] is independent of the binary treatment T
and we analyze the hypothesis on the full sample and two subsamples. To
begin, let’s simulate a single set of data and run a regression on it.

n_obs <- 100

treatment <- rbinom(n_obs, 1, 0.5)
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male <- rbinom(n_obs, 1, 0.5)

response <- runif(n_obs)

fit_all <- lm(response ~ treatment)

summary(fit_all)

##

## Call:

## lm(formula = response ~ treatment)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.5017 -0.2482 -0.0257 0.2493 0.5537

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.5052 0.0420 12.03 <2e-16

## treatment -0.0648 0.0577 -1.12 0.26

##

## Residual standard error: 0.288 on 98 degrees of freedom

## Multiple R-squared: 0.0127, Adjusted R-squared: 0.00263

## F-statistic: 1.26 on 1 and 98 DF, p-value: 0.264

We want to run two more regressions like this, one for each gender subgroup,
and extract the p-value on the treatment variable from each of them. We’ll
write a function to perform this extraction.

extract_p <- function(fitted_model) {

tidy(fitted_model) %>%

filter(term == "treatment") %>%

select(p.value) %>%

as.numeric()

}

extract_p(fit_all)

## [1] 0.264

Now we can run the regressions on each subgroup and get their p-values too.
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fit_male <- update(fit_all, subset = male == 1)

fit_female <- update(fit_all, subset = male == 0)

extract_p(fit_male)

## [1] 0.894

extract_p(fit_female)

## [1] 0.0194

OK, so now we’ve done it once. But we want to repeat it many times, to see
what percentage of the time we end up with at least one p-value below 0.05.
To do this we’ll turn to our friend replicate().

n_obs <- 100

sim_p_hack <- replicate(1000, {

## Simulate data

treatment <- rbinom(n_obs, 1, 0.5)

male <- rbinom(n_obs, 1, 0.5)

response <- runif(n_obs)

## Run regressions

fit_all <- lm(response ~ treatment)

fit_male <- update(fit_all, subset = male == 1)

fit_female <- update(fit_all, subset = male == 0)

## Extract p-values

p_all <- extract_p(fit_all)

p_male <- extract_p(fit_male)

p_female <- extract_p(fit_female)

## Report the lowest p-value

min(p_all, p_male, p_female)

})

Let’s see what proportion of the time we end up with a reported p-value less
than 0.05. Remember, since the null hypothesis is true, this should be 5%.
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mean(sim_p_hack <= 0.05)

## [1] 0.115

The actual probability of incorrectly rejecting the null hypothesis is more than
double what it should be. And that’s just with a single post hoc subgroup split.
With enough post hoc slicing and dicing of the data, the probability of finding
some nominal p ≤ 0.05 can get pretty big.

To drive the point home further, let’s look at the distribution of the reported
p-values under the null hypothesis.

plot(ecdf(sim_p_hack),

xlab = "p-value",

ylab = "Cumulative probability",

xlim = c(0, 1))

abline(a = 0, b = 1, lty = 3)

legend("topleft", c("observed", "theoretical"), lty = c(1, 3))
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We’ve talked about one method of p-hacking, but there are many ways:

• Splitting up data by subgroups post hoc

11



• Changing the set of variables you control for
• Changing the operationalization of the covariate of interest or the re-

sponse variable
• Changing the time period of the analysis
• Stopping data collection as soon as p ≤ 0.05

What all these have in common is that the final test you report depends on the
result of some earlier test you ran. All standard hypothesis tests assume that
you didn’t do anything like this—that this was the only test you ran, that your
initial results didn’t influence your choice of further tests. It is unethical to
report the nominal p-value (i.e., the value your computer spits out) from a p-
hacked test, because the true probability of getting a result at least as extreme
is greater than the nominal value.

What should you do to get by in political science while maintaining high ethical
standards?

• Decide exactly which hypothesis you want to test and which test to run
before you collect your data, or at least before running any analysis on
it.

• Report every test you perform on the data, and only highlight results that
are robust across tests.

• Randomly split your sample before performing any tests. Go wild with
the first half of the sample looking for an interesting hypothesis. Then
test that hypothesis on the other half of the sample (and report the results
whether they come out in your favor or not). Equivalently, hack your
pilot data and then go out and collect new data to try to replicate your
hacked initial hypothesis.

• Apply a correction for multiple testing problems, or use computational
methods to calculate the distribution of a data-conditional test statistic
under the null hypothesis. (We’ll talk a bit about how to do this in the
latter weeks of the course.)

• Give up on all this data stuff and become a formal theorist.
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