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This week, we are going to set up the linear regression model in matrix notation
and derive the ordinary least squares estimator. It is going to be the most
abstract and theoretical week of the course. My goal is for you to understand
linear regression in the broader statistical context we established last week.

• The linear model is a particular way to parameterize the relationship
between an outcome of interest and other observed variables.

• Ordinary least squares is one estimator (among many) for the parameters
of the linear model.

• We default to using OLS to estimate the linear model parameters because
its sampling distribution has nice properties.

Regression, Generally Speaking

Let’s begin with the basics. The response variable is the variable we are most
interested in explaining or predicting. We have N observations of the response
variable, each denoted Yi, collected in the N -vector Y = (Y1, . . . , YN ). Through-
out this class, and the course, I will treat all vectors as column vectors, so Y is
N × 1.

We are interested in the response variable as it relates to other observable vari-
ables, which we call the covariates. The covariates for each observation are
collected in the p-vector x i = (x i1, . . . , x ip), where p is the number of covari-
ates. I write x i (lowercase) to refer to the p-vector of all covariates for the i’th
observation, and X j (uppercase) to refer to the N -vector of all observations of
the j’th covariate. Finally, I write X to denote the N × p matrix of all observa-
tions of all covariates—the matrix whose rows are the x is and whose columns
are the X js.

We will start with a fairly general model of the relationship between the co-
variates and the response. This is the additive error model, in which

Yi = f (x i) + εi
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for all i = 1, . . . , N . Remember from last time that we are primarily interested
in conditional expectations: given that the covariates are fixed at some value
x , what do we expect the response to be? Let us impose a basic “white noise”
condition on the error term: that its expected value be zero regardless of the
value of the covariates, so E[εi | x i] = 0. We then have

E[Yi | x i = x] = E[ f (x i) + εi | x i = x]
= E[ f (x i) | x i = x] + E[εi | x i = x]
= f (x).

Just like last time, we call f (·) the regression function. In real-world data anal-
ysis, we don’t know the exact form of the regression function—it’s what we’re
trying to learn about from our data. To make this task tractable, we need to
impose some structure on f (·). Most often, we’ll assume that there is a finite
(and, typically, small) set of parameters that define the regression function for
all possible values of the covariates. Formally, this entails assuming that there
is a known function g(·) and a vector of unknown parameters θ such that

f (x) = g(x ,θ )

for all feasible values of x .

The Linear Model

To review, here’s what we’ve done so far:

1. We’ve defined the problem of learning the relationship between covari-
ates x i and response Yi as that of learning the regression function, f (·).

2. We’ve made it tractable to learn the regression function from data by
assuming its shape is a function of a small set of parameters, θ .

The linear model, which you first encountered last semester, is one way to
accomplish step 2.

The linear model assumes that the relationship between the covariates and the
response takes the form

Yi = β1 x i1 + · · ·+ βp x ip + εi,
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where the p-vector β = (β1, . . . ,βp) is the set of unknown parameters. We call
usually call the parameters of the linear model coefficients. We can write the
linear model more compactly as

Yi =
p
∑

j=1

β j x i j + εi

and even more compactly, using matrix notation,1 as

Yi = x>i β + εi.

In fact, we can write the model for every observation in matrix form as

Y =
p
∑

j=1

β jX j + ε= Xβ + ε,

where ε is the N -vector containing each εi. This will be convenient when we
come to estimation of the linear model.

One apparent drawback of the linear model is that the conditional expectation
of Yi is zero if all the covariates equal zero. Sometimes this is sensible, like
if the response is weight and the covariate is height. Other times it isn’t, like
if the response is turning out in the last election and the covariate is income
from employment. To bypass this seeming problem, we usually define the first
covariate as X1 = 1, and we call the associated parameter, β1, the intercept.
In applied work, you should never estimate a regression model without an
intercept.

Since β1 is the intercept, that must mean the other β js are slopes. True enough.
If we were to speak in causal language—and I’d rather not for now, but alas—
we would say that one implication of the linear model is that every covariate
has a constant marginal effect on the response. The partial derivative of the
regression function with respect to the j’th covariate is a constant,

∂ E[Yi | x i]
∂ x i j

= β j.

As we’ll talk about more in a few weeks, and as you saw last semester, you can
relax this a bit by including higher-order terms of the covariates (quadratics,
interactions, and the like) in the model.

1The symbol > denotes the transpose. Since x i is a p×1 column vector, its transpose x>i is
a 1× p row vector.
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The Ordinary Least Squares Estimator

Once we assume a linear model, our goal is to estimate β from our data. How
we go about estimating β is up to us. As we saw last week, we can use any
statistic—any function of the sample data—as an estimator. What we really
want, though, is a good estimator.

To derive the ordinary least squares estimator of β , we’re going to work back-
ward from a metric for the quality of an estimate. Imagine we have some b,
a p × 1 vector we are using to estimate β . We can’t directly compare b to β ,
because we don’t know β . But we do observe the responses Yi, and we know
that the conditional expectation of each is x>i β . So if b is close to the true value
of β , we would expect the predictions Ŷi = x>i b to be relatively close to the
observed values of Yi. The residuals are the differences between the predicted
and observed values,

ei = Yi − Ŷi,

collected in the vector e = (e1, . . . , eN ).

We will look for the estimate b that minimizes the sum of squared residuals,

e>e =
N
∑

i=1

e2
i .

This means we will penalize being off by 2 more than twice as much as we
penalize being off by 1. We’ll take an estimate that’s always a little bit off over
one that’s exactly right half the time and wildly wrong the other half of the
time. This is a choice with consequences—for one thing, our estimates will be
sensitive to outliers. But, as we will see, it turns out not to be a bad default
choice.

Our task is to minimize the function

e>e = (Y − Ŷ )>(Y − Ŷ )

= (Y −Xb)>(Y −Xb)

= Y>Y − 2b>X>Y + b>X>Xb

with respect to b. You’ll remember from the math boot camp that if b minimizes
e>e, then the partial derivative of the above expression with respect to each
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element of b must be zero. So we have

∂ e>e
∂ b

= −2X>Y + 2X>Xb = 0.

Rearranging terms gives us
X>Xb = X>Y,

or,
b = (X>X)−1X>Y.

So, the ordinary least squares estimator is the statistic defined by the function

β̂OLS(Y,X) = (X>X)−1X>Y.

For some data, the OLS estimate might not exist. The sticking point is that the
cross-product matrix X>X must be invertible, but sometimes it isn’t. Two main
reasons why this might be the case:

1. There are more covariates than observations, or p > N .
2. One of the covariates (possibly the intercept) is equal to a linear combi-

nation of some set of the other covariates.

The usual risk factor for this latter case is when you’ve included every category
of a dummy variable. For example, imagine you run an experiment with 10
subjects in which every other subject is in the treatment group.

treatment <- rep(c(1, 0), length.out = 10)

control <- 1 - treatment

X <- cbind(intercept = 1, treatment, control)

X

## intercept treatment control

## [1,] 1 1 0

## [2,] 1 0 1

## [3,] 1 1 0

## [4,] 1 0 1

## [5,] 1 1 0

## [6,] 1 0 1

## [7,] 1 1 0

## [8,] 1 0 1

## [9,] 1 1 0

## [10,] 1 0 1
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XtX <- t(X) %*% X

XtX

## intercept treatment control

## intercept 10 5 5

## treatment 5 5 0

## control 5 0 5

solve(XtX) # "solve" does matrix inversions

## Error in solve.default(XtX): Lapack routine dgesv: system is exactly singular: U[3,3] = 0

qr(XtX)$rank

## [1] 2

Why OLS?

Let’s once more take a step back and review where we’ve been.

1. We set up the general problem of learning the regression from our data.
2. We assumed a linear model to make the regression problem tractable.
3. We derived the OLS estimator for the parameters of the linear regression

model.

But there are infinitely many estimators for β . Why do we like this one so
much?

The first answer is that the OLS estimator is unbiased: its expected value is
the population value of β . If we could take thousands of samples and run
OLS on each of them, the average of the results would be very close to β .
You can confirm this by running a simulation in R. But it’s also easy to derive
analytically. First, if we treat X as fixed, we have

E[β̂OLS(Y,X) |X] = E[(X>X)−1X>Y |X]
= (X>X)−1X>E[Y |X]
= (X>X)−1X>Xβ

= β
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Then, averaging over the population distribution of X gives us the uncondi-
tional expectation

E[β̂OLS(Y,X)] = E
�

E[β̂OLS(Y,X) |X]
�

= E[β] = β .

Unbiasedness is a finite-sample property. No matter the sample size (as long
as N ≥ p), the expected value of the OLS estimator is the true parameter, β .
We also care about asymptotic properties, which characterize the behavior of
the estimator as the sample size grows without bound. The most important
asymptotic property is consistency. An estimator is consistent if, as the sample
size grows large (N →∞), the bias and variance of the estimator go to zero.
With enough data, a consistent estimator almost always yields an estimate
very close to the true value. We won’t go through the math here—too much
i-dotting and t-crossing—but suffice it to say, under a broad and plausible set
of conditions, the OLS estimator is consistent. This is another reason we like
OLS.

While we’re in the land of asymptotics, it is also worth mentioning that OLS is
asymptotically normal: as the sample size grows large, the sampling distribu-
tion of the OLS estimator is approximately normal. Like consistency, this de-
pends on some plausible regularity conditions we will not discuss. Asymptotic
normality is what lets us use Z scores for testing hypotheses about regression
parameters from regression results.

The last property we typically care about is efficiency: is the standard error of
the estimator lower than that of the alternatives? Remember that we like ef-
ficient estimators because they let us make inferences more precisely. Is OLS
efficient? It depends—relative to what? According to the Gauss-Markov The-
orem, the OLS estimator is efficient in the class of linear, unbiased estimators,
assuming some additional regularity conditions hold.2 So, like Tobias Funke,
OLS is BLUE (Best Linear Unbiased Estimator). The restriction to linear estima-
tors is a crucial point here. OLS is efficient relative to any unbiased estimator
of the form

β̂(Y,X) = CXY,

where CX is a p×N matrix whose value may depend on the matrix of covariates
(but not on Y ). But there might be a biased estimator whose variance is so

2In particular, these conditions are that, across observations, the error terms be uncorrelated
(E[εiε j] = 0) and have identical variance (V [εi] = V [ε j] = σ2). We will return to these
conditions in a few weeks when we discuss estimators for non-constant variance.
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much lower that it’s worth using, or an unbiased nonlinear estimator that is
harder to compute (as nonlinear estimators tend to be) but even more efficient.

Summing Up

• We want to model a response as a function of covariates.
• We use the linear model because it is simple and its parameters are easy

to interpret.
• We estimate the linear model by OLS because the OLS estimator is un-

biased, consistent, asymptotically normal, and efficient relative to other
linear unbiased estimators.

Next week, we will talk about the disconnect between the statistical theory we
just laid out and the estimates that get reported in scientific publications. This
will also lead us into a discussion of how we make inferences from regression
estimates, a topic we’ve left mostly untouched until now.
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