
Important Things about Statistics
Brenton Kenkel — PSCI 8357
January 14, 2016

To kick off the course, I gave you a quiz with the following questions:

1. What is a statistic?
2. What is a parameter?
3. What is an estimator?
4. What is a sampling distribution?
5. What is a standard error?

To do good, honest empirical work, you need to understand these concepts
well. Conversely, most of the problems with empirical social science that we
will discuss boil down to misunderstandings or neglect of these concepts.

Statistics

A statistic is a function of sample data. Let X = (X1, . . . , XN) denote our sample
data. The most widely known statistic is the sample mean, defined by the
function

m(X) =
1
N

N
∑

i=1

X i.

Other statistics include the sample median, the sample variance, the minimum
and maximum, and so on. Anything that’s a function of the sample is a statistic.

I’m going to use a running example to illustrate each of the concepts I asked
you about. Assume we have a sample X = (X1, . . . , XN) where each X i is drawn

independently from a uniform distribution on [0,1]: X i
i.i.d.∼ U[0,1]. For rea-

sons that will become clear later, assume that X is ordered from smallest to
largest, so X1 ≤ X2 ≤ · · · ≤ XN−1 ≤ XN . Finally, assume we also observe a
sample of Y = (Y1, . . . , YN), where

Yi = 1+ 2X i + εi,

with εi
i.i.d.∼ U[−1,1].

1

We can draw our very own sample from this distribution using the handy ran-
dom number generation functions in R.

n_obs <- 100

x <- runif(n_obs, min = 0, max = 1)

x <- sort(x)

y <- 1 + 2 * x + runif(n_obs, min = -1, max = 1)

Let’s take a look at the data we just simulated.

plot(x, y)

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

1.
5

2.
5

3.
5

x

y

We can compute any manner of statistics from this sample.

mean(x)

[1] 0.471

mean(y)

[1] 1.94

sd(x)

[1] 0.286

Even the scatterplot above is a statistic. Of course, the values of each of these

2

statistics would have been different if the sample had come out differently. In
other words, a statistic is a random variable, just like the sample data itself.
The same is not true for parameters, our next concept of interest.

Parameters

A parameter is a feature of the population of data. Unlike the value of a
statistic, which depends on the particular sample and thus is variable, the value
of a parameter is fixed. The most widely known example of a parameter is the
population mean, E[X]. Another example is the population variance, E[(X −
E[X])2].

In our running example, the population mean of each random draw X i is
E[X i] = 0.5. The population mean of each Yi is

E[Yi] = E[1+ 2X i + εi] = 1+ 2E[X i] + E[εi] = 2.

These don’t change with the sample. No matter which data we draw, the pa-
rameters remain the same.

In regression analysis, we care about a particular type of parameter: the con-
ditional expectation of Yi, given some value of X i. In other words, if we fix
the value of the random draw X i to be some specific quantity x , what is the
expected value of the random draw Yi? In our running example, we have

E[Yi |X i = x] = E[1+ 2x + εi]
= 1+ 2x + E[εi]
= 1+ 2x .

To get ahead of ourselves a bit, let’s call f (x) = E[Yi |X i = x] the regression
function. Specific values of the regression function, like f (0) = 1 and f (1) = 3,
are parameters. So are its derivatives. When the regression function is affine,
such as the one in the running example, its derivatives are constant. So we can
define yet another parameter by

β =
d f (x)

d x
.

3

In the running example, we have β = 2.1

Whereas statistics are variable functions of the sample data, parameters are
fixed features of the population. We often use statistics to make inferences
about parameters. That brings us to the topic of estimators.

Estimators

An estimator is a statistic used to estimate a parameter. This definition seems a
bit tautological. It is. Take any statistic, say “I am using this statistic to estimate
such-and-such parameter,” and—ta da! You have an estimator. It won’t be a
very good estimator if you didn’t choose your statistic carefully, but it will be
an estimator nonetheless. The important part is that an estimator, being a
statistic, is a function of sample data.

The best-known estimator is the sample mean m(X) used to estimate the pop-
ulation mean E[X]. The sample mean is a great estimator, but not such a great
example of an estimator. It is simple to calculate, intuitive to understand, and
has good statistical properties. It’s rare for an estimator to check off all these
boxes. For example, you probably saw in introductory statistics that the some-
what unintuitive

v(X) =
1

N − 1

N
∑

i=1

(X i −m(X))2

is our usual estimator for the population variance.

Let’s return to our running example. Suppose we want to estimate β , the coef-
ficient on x in the linear regression function f (x) = 1+ 2x , whose true value
is 2. In introductory statistics, you learned about the ordinary least squares
estimator of β . Today we’ll work with a much worse estimator. We’re going to
connect the dots at the lowest and highest values of X i, and measure the slope
of the resulting line. Formally, this estimator is defined by

b(X , Y) =
YN − Y1

XN − X1
.

1If the regression function were not linear, the derivative would vary across values of x , and
thus could not be described by a single constant. For example, consider the model Yi = X 2

i +εi .
This yields the regression function f (x) = x2, with derivative d f (x)/d x = 2x .

4

Since we sorted x as soon as we drew its values, we can easily calculate an
estimate using this estimator.

b <- (y[n_obs] - y[1]) / (x[n_obs] - x[1])

b

[1] 3.25

Let’s visualize how we arrive at this estimate.

plot(x, y)

segments(x[1], y[1], x[n_obs], y[n_obs])

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

1.
5

2.
5

3.
5

x

y

Not bad, eh? (Just kidding. It is bad.)

Like any statistic, the value of an estimator will turn out differently depending
on the sample data. We like estimators whose average value equals the true
parameter value (unbiased), that almost always get close to the true value if we
have enough data (consistent), and that have a relatively low average margin
of error (efficient). To figure out if these properties hold for a particular esti-
mator, we need to know how the estimator is distributed, given the distribution
of the data.

5

Sampling Distributions

A sampling distribution is the probability distribution of a statistic. I think of
it like this. The sample data come from a distribution. A statistic is a function
of sample data—for each different way the sample could turn out, there is a
corresponding way the statistic would turn out. So the distribution of the data
induces a distribution of the statistic.

Let’s take a look at the sampling distribution of our estimator b(X , Y). We al-
ready saw the value of b(X , Y) for the one particular sample we drew. But that
was just one draw from the sampling distribution of b(X , Y). To approximate
the full distribution, we’re going to use the Monte Carlo method. We’ll draw a
large number of samples of the data (X , Y) from their probability distribution.
Then we’ll compute and save the estimate b(X , Y) for each sample we drew.

The easiest way to run a Monte Carlo simulation like this is with the replicate()
function. I’ll first illustrate the function by showing how we can take 5 samples

of X
i.i.d.∼ U[0,1], each with N = 3.

replicate(5, runif(3, min = 0, max = 1))

[,1] [,2] [,3] [,4] [,5]

[1,] 0.0434 0.9419 0.703 0.125 0.550

[2,] 0.4292 0.0791 0.792 0.388 0.239

[3,] 0.2121 0.7077 0.345 0.530 0.782

replicate() takes the expression in its second argument, runs it the number
of times given to its first argument, and stores the results from each run. It’s
much nicer than writing a for loop. Now let’s use it to draw from the sampling
distribution of our estimator.

n_mc <- 1000

n_obs <- 100

sampling_distribution <- replicate(n_mc, {

x <- runif(n_obs, min = 0, max = 1)

x <- sort(x)

y <- 1 + 2 * x + runif(n_obs, min = -1, max = 1)

b <- (y[n_obs] - y[1]) / (x[n_obs] - x[1])

b

})

6

Is our estimator unbiased—on average, does it get the right result? The only
way to show for sure that an estimator is unbiased (or not) is through a math-
ematical proof, but a Monte Carlo simulation usually gets us pretty close.

mean(sampling_distribution)

[1] 2

Well that’s pretty suggestive. Let’s see some more digits.

format(mean(sampling_distribution), digits = 10)

[1] "1.998875886"

If I had to guess, I’d guess our estimator is unbiased. Now let’s take a look at
the shape of the full sampling distribution.

plot(density(sampling_distribution))

0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

density.default(x = sampling_distribution)

N = 1000 Bandwidth = 0.1913

D
en

si
ty

Looks normal-ish, and centered around the true parameter value of β = 2.
Hey, maybe this estimator isn’t so bad after all! (It is. I swear.)

7

Standard Error

A standard error is the standard deviation of a sampling distribution. The
bigger the standard error, the more variable the statistic is across samples. It’s
easier to make inferences from a statistic with a lower standard error, since it
is less liable to vary wildly across samples.

Since the standard error is a property of the population distribution of a statis-
tic, which in turn is a function of the population distribution of data, this means
standard errors are parameters. Like any parameter, their value is fixed.

Wait a minute. I just said standard errors are fixed parameters. But my statis-
tical software spits out standard errors. And I know those are a function of the
data.

ols_xy <- lm(y ~ x)

summary(ols_xy)

##

Call:

lm(formula = y ~ x)

##

Residuals:

Min 1Q Median 3Q Max

-0.9567 -0.5005 -0.0759 0.5032 1.0148

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.047 0.112 9.32 3.7e-15

x 1.893 0.204 9.26 4.9e-15

##

Residual standard error: 0.581 on 98 degrees of freedom

Multiple R-squared: 0.467, Adjusted R-squared: 0.461

F-statistic: 85.8 on 1 and 98 DF, p-value: 4.86e-15

See? Standard errors! It says it right there! The standard error of the coeffi-
cient on X i is 0.204.

Wrong. Those are estimated standard errors. As researchers, we usually don’t
know the sampling distribution of the estimator we’re using. The sampling
distribution of any decent estimator depends on the true parameter value, and

8

if we knew that, we wouldn’t have to estimate it in the first place. So to quantify
our uncertainty about our estimate, we also need to estimate its standard error.
Whenever an applied paper talks about “the standard errors,” it means “the
estimated standard errors” or, equivalently, “the standard error estimates”.

Returning to the running example, let’s use our Monte Carlo simulation results
to approximate the standard error of our pet estimator.

sd(sampling_distribution)

[1] 0.846

That’s more than four times the estimated standard error of OLS. Maybe the
OLS estimate of the standard error is way, way off. Just to check, let’s simulate
its standard error.

ols_sampling_distribution <- replicate(n_mc, {

x <- runif(n_obs, min = 0, max = 1)

x <- sort(x)

y <- 1 + 2 * x + runif(n_obs, min = -1, max = 1)

fit_ols <- lm(y ~ x)

coef(fit_ols)["x"]

})

sd(ols_sampling_distribution)

[1] 0.195

Nope—it’s less than one-fourth that of the estimator we invented. Let’s com-
pare their densities.

plot(density(ols_sampling_distribution), xlim = c(-1, 5))

lines(density(sampling_distribution), lty = 2)

legend("topright", c("OLS", "b(X, Y)"), lty = c(1, 2))

9

−1 0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

density.default(x = ols_sampling_distribution)

N = 1000 Bandwidth = 0.04393

D
en

si
ty

OLS
b(X, Y)

Both are centered around the true value of β = 2, but the OLS estimate is
much more likely to be close to the true parameter since its standard error is
so much lower. This is why our invented estimator is bad: it’s so inefficient
compared to OLS.

10

