
Assignment 3: You’ll Just Run 300,000
Regressions
PSCI 8357, Spring 2016
January 28, 2016

This assignment must be turned in by the start of class on Thursday, February
4. You must follow the instructions for submitting an assignment.

Main Task

In class this week, we discussed how replication with new data can help ame-
liorate the problems caused by publication bias and the statistical significance
filter. But what can we do if new data isn’t forthcoming?

The literature on economic growth faced exactly this problem in the early
1990s. Dozens of different variables had been found to be statistically sig-
nificant correlates of growth, depending on the exact specification one used.
But we can’t wait another 50 years to replicate these studies with another half-
century of growth data. To figure out which correlations were robust—i.e.,
which ones were not sensitive to a particular choice of specification—Levine
and Renelt (1992) regressed growth on every conceivable combination of co-
variates (within limits). Sala-I-Martin (1997), in the brilliantly titled article “I
Just Ran Two Million Regressions,” refined their approach.

In this assignment, you will only run a little more than 300,000 regressions.1

The application is a political science topic as prominent and bedeviling as that
of growth rates in economics: the correlates of civil war onset. Your analysis
will mirror that of Hegre and Sambanis (2006), who bring the millions-of-
regressions approach to the civil war literature. You will be working with the
data file hs-imputed.csv, a cleaned version of the Hegre and Sambanis (2006)
data with missing values imputed.2

1Specifically, you will run 3×
�87

3

�

= 317, 985 regressions.
2See the file clean-and-impute.r for how I cleaned up their replication data and imputed

missing values. Because of the sheer number of variables involved relative to the time avail-
able to prepare a homework assignment, my approach was cursory and sloppy. In your own
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The data is in country-year format, with the following variables:

• country and year: Self-explanatory.
• warstns: Indicator for whether a civil war began. This will be the re-

sponse variable in all of your regressions.
• Three “core” covariates to include in every regression:

– ln_popns: The natural logarithm of the country’s population.
– ln_gdpen: The natural logarithm of the country’s GDP per capita.
– pt8: 2t/8, where t is the number of years the country has been at

peace.
• Eighty-eight “concept” variables whose association with civil war onset

you will be testing. Descriptions of each appear in Table 1 of Hegre and
Sambanis (2006).

You will select J = 3 of the 88 “concept” variables to test the robustness of
their association with civil war onset. One of these must be ehet, the ethnic
heterogeneity index; the other two are up to you. For each variable, we want
to estimate the average probability of β̂ j > 0, where the average is taken over
the sampling distributions of each different regression specification. For each
of these variables, j = 1,2, 3, you will do the following:

• Consider the set of M =
�87

3

�

combinations of three covariates from the
87 other concept variables.

• For each m= 1, . . . , M , you will:
– Regress warstns on your chosen variable X j, the three core covari-

ates, and the m’th combination of other concept variables. (So every
regression will have seven covariates, plus an intercept.)

– Save the following quantities:
∗ β̂ jm: the estimated coefficient on X j

∗ σ̂2
jm: the estimated variance (squared standard error) of the

coefficient on X j

∗ R2
jm: the R2 of the regression

• Using the results across each model, calculate the following:
– A weight for each model, proportional to its R2:

ω jm =
R2

jm
∑M

l=1 R2
jl

manuscripts, including the final paper for this class, you should be considerably more inquisi-
tive and careful about missing values than I am in clean-and-impute.r.
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– The average estimated coefficient,

β̄ j =
M
∑

m=1

ω jmβ̂ jm.

– The average estimated variance of the coefficient,

σ̄2
j =

M
∑

m=1

ωmσ̂
2
jm.

– The so-called average p-value,

p̄ j =
M
∑

m=1

ω jmΦ(0 | β̂ jm, σ̂2
jm),

where Φ(0 |µ,σ2) is the probability of drawing a value less than
zero from a normal distribution with mean µ and variance σ2. This
is not the average of the individual p-values, since direction matters.

In the last step, you’re essentially answering the following: Suppose you drew
a model at random, where the probability of choosing each model is propor-
tional to its R2. Then, suppose you drew a value of β j from the estimated
sampling distribution of the coefficients of this model. What is the probability
that the value you drew is less than zero? A result close to 0 or 1 indicates a ro-
bust relationship. A result close to 0.5 indicates that the sign of the estimated
coefficient is highly dependent on the particular specification—and thus the
relationship is not robust.

Interpret your results. Which of the covariates you chose is robustly associ-
ated with civil war onset? Which are not? What are the limitations of this
approach—what might we be missing by analyzing robustness this way?

Your results will not be exactly the same as in Hegre and Sambanis (2006).
First, you are assuming a linear model and using OLS, whereas they assume
a logistic model and use its maximum likelihood estimator. Second, missing
values in the data have been imputed, so you do not need to worry about
combinations of covariates that make the sample size too small.
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Weekly Visualization Challenge

Compare the estimated distribution of draws of β̂ j across the three variables
you chose to study.

Hints

Here are some R tips I found useful in completing this assignment myself. You
don’t have to use them, but I bet you will find them useful too.

Caching Output

It should take about 12 seconds to run a thousand regressions, which means
about an hour to run 300,000.

300000 * (12 / 1000) / 60

## [1] 60

You don’t want to have to spend an hour recompiling your R Markdown doc-
ument every time you make a tiny change. I strongly recommend using the
cache = TRUE chunk option for your major computations, as described in http:
//yihui.name/knitr/demo/cache/.

Creating Combinations

You can use the combn() function in R to generate all possible combinations
of a particular length from a particular set. For example, here we have every
combination of two letters from the first five letters in the alphabet.

combn(x = letters[1:5], m = 2)

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

## [1,] "a" "a" "a" "a" "b" "b" "b" "c" "c" "d"

## [2,] "b" "c" "d" "e" "c" "d" "e" "d" "e" "e"
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Set Difference

Suppose you have two vectors a and b, and you want to retrieve every element
of a that is not an element of b. You could do this the long way.

a <- c("a", "b", "c", "d", "e")

b <- c("b", "d")

a[!(a %in% b)]

## [1] "a" "c" "e"

Or you could just use the set difference function, setdiff(). Surely you re-
member set differences from the math boot camp.

setdiff(a, b)

## [1] "a" "c" "e"

This is especially useful if a and b have long and unwieldy names. While you’re
thinking about set operations, union() and intersect() work too.

union(a, b)

## [1] "a" "b" "c" "d" "e"

intersect(a, b)

## [1] "b" "d"

Selecting Variables with a Character Vector

You can use dplyr’s select(one_of(var_names)) to select variables according
to the character vector var_names.

library("dplyr")

fake_data <- data.frame(matrix(rnorm(30), ncol = 5))

names(fake_data) <- letters[1:5]

fake_data
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## a b c d e

## 1 -0.8087 0.4763 -0.881 -0.396 0.864

## 2 -0.0898 0.7313 -1.702 2.470 1.413

## 3 0.2137 -0.4864 -0.617 -0.113 -0.564

## 4 -0.5143 1.7241 -0.623 0.387 -0.808

## 5 0.3036 0.7437 -0.267 1.452 1.186

## 6 -0.6999 0.0789 1.199 -0.369 -0.216

var_names <- c("b", "d")

fake_data %>% select(one_of(var_names))

## b d

## 1 0.4763 -0.396

## 2 0.7313 2.470

## 3 -0.4864 -0.113

## 4 1.7241 0.387

## 5 0.7437 1.452

## 6 0.0789 -0.369

Regress on All Variables

Suppose you have a data frame with a bunch of variables in it, and you want
to regress one of those variables on all the others. You can do this without
writing out a long formula. Just use a formula like y ~ ., where y is the name
of your response variable.

linear_fit <- lm(a ~ ., data = fake_data)

summary(linear_fit)

##

## Call:

## lm(formula = a ~ ., data = fake_data)

##

## Residuals:

## 1 2 3 4 5 6

## -0.0563 -0.3263 0.1869 0.0152 0.4753 -0.2948

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.2434 0.3707 -0.66 0.63
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## b -0.3694 0.4550 -0.81 0.57

## c -0.0226 0.3931 -0.06 0.96

## d 0.4133 0.4101 1.01 0.50

## e -0.2188 0.4361 -0.50 0.70

##

## Residual standard error: 0.676 on 1 degrees of freedom

## Multiple R-squared: 0.595, Adjusted R-squared: -1.02

## F-statistic: 0.367 on 4 and 1 DF, p-value: 0.826

Extract Regression Details

R makes it unnecessarily hard to extract the estimated standard errors and
other interesting quantities from regression results. The broom package does
the hard work for you. Just use the tidy() function to get a data frame with
the information you want.

library("broom")

tidy(linear_fit)

## term estimate std.error statistic p.value

## 1 (Intercept) -0.2434 0.371 -0.6565 0.630

## 2 b -0.3694 0.455 -0.8119 0.566

## 3 c -0.0226 0.393 -0.0575 0.963

## 4 d 0.4133 0.410 1.0078 0.498

## 5 e -0.2188 0.436 -0.5018 0.704

The output is a data frame, which means we can use all our favorite dplyr tools
on it.

tidy(linear_fit) %>%

filter(term == "d") %>%

select(estimate, std.error)

## estimate std.error

## 1 0.413 0.41

You can extract additional information, including the R2, with the glance()
function. Its output looks like a vector, but it’s actually a one-row data frame.

glance(linear_fit)
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## r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC

## 1 0.595 -1.02 0.676 0.367 0.826 5 -0.793 13.6 12.3

## deviance df.residual

## 1 0.458 1

glance(linear_fit) %>% select(r.squared)

## r.squared

## 1 0.595

Cumulative Probabilities from a Normal Distribution

Suppose you have a random variable X drawn from a normal distribution with
mean µ and variance σ2, and you want to find the probability of drawing a
value of X less than some fixed number z. You would use pnorm(z, mean =
mu, sd = sigma), as in the following examples.

## Probability that a standard normal is less than -1.96

pnorm(-1.96, mean = 0, sd = 1)

## [1] 0.025

## Probability of drawing a value less than 1 from a normal distribution with

## mean 2 and sd 5

pnorm(1, mean = 2, sd = 5)

## [1] 0.421
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