
R Tips: Looping
PSCI 8357, Spring 2016
January 22, 2016

In this week’s assignment—and, most likely, future ones—you will want to
perform the same operation on many different values. We typically do this
in R (and any other programming language) with a loop. This brief note will
introduce you to the concept of loops and illustrate some especially convenient
ways to write loops in R.

for Loops

Use a loop when you have:

1. A list of values
2. An operation to perform on each of those values

For example, suppose you want to:

• Draw N = 5 values from a standard normal distribution
• Calculate their maximum and save it
• Repeat for N = 10, 15,20, 25

So you have the list of values N = 5, . . . , 25 and the operation “draw X1, . . . , XN

from N(0, 1) and calculate their mean”. One way you could do this is the copy-
and-paste way:

max_5 <- max(rnorm(5))

max_10 <- max(rnorm(10))

max_15 <- max(rnorm(15))

max_20 <- max(rnorm(20))

max_25 <- max(rnorm(25))

c(max_5, max_10, max_15, max_20, max_25)

[1] 0.224 1.948 2.189 1.150 1.959

1

Don’t do this. First, it doesn’t scale well. Imagine how much time you’d waste
if you had to copy and paste this a hundred, or a thousand, or 300 million
times. Second, it’s error prone. At some point you will mess up and enter the
wrong thing. Third, it’s a nightmare if the operation changes—you’ll have to
go back and manually fix every line of code.

A better way would be to write a loop, like in the following example.

Define the sequence of values

n_seq <- seq(5, 25, by = 5)

Make a vector to store the results

max_by_n <- rep(NA, length(n_seq))

for (i in 1:length(n_seq)) {

Retrieve the corresponding value

n <- n_seq[i]

Perform the operation and store the results

x <- rnorm(n)

max_by_n[i] <- max(x)

}

max_by_n

[1] 1.402 0.877 1.649 1.366 2.469

When we write for (i in vector) { operation }, we are telling R to take
each individual value of vector, call it i, and perform operation on it. So
here, we take each value of i between 1 and 5, find the corresponding value
of N , draw N observations from a standard normal distribution, and save their
maximum.

foreach Loops

The code above is a bit clunky. Before we write our loop, we have to set up
storage for the results. Instead of looping directly over N , we loop over the
number of different values of N we’ll be examining. We can write loops more
elegantly using the foreach package.

2

https://cran.r-project.org/web/packages/foreach/index.html

library("foreach")

The basic syntax of a foreach loop is foreach (i = vector) %do% { operation
}. Notice that we’ve replaced for with foreach, replaced in with =, and added
%do% between the loop setup and the operation. But there is an importance dif-
ference between for and foreach.

• for just performs the operation you ask it to. If you don’t tell it to save
the results of the operation, it’ll perform it and then forget.
• foreach saves the result of each operation it performs—specifically, the

value of the last line of the operation—and returns the results as a list.

So we can rewrite our earlier loop much more elegantly using foreach. The
exact values of the output will be different than before since we’re drawing
random numbers, but this code performs the same task:

n_seq <- seq(5, 25, by = 5)

max_by_n <- foreach (n = n_seq) %do% {

max(rnorm(n))

}

max_by_n

[[1]]

[1] 0.666

##

[[2]]

[1] 0.175

##

[[3]]

[1] 1.79

##

[[4]]

[1] 1.76

##

[[5]]

[1] 1.85

Notice that we don’t have to explicitly set up a place to store the results, and
we can loop over N instead of 1, . . . , 5. The drawback is that the results are

3

stored as a list, and we’d like a vector. We can accomplish that by using the
.combine argument to foreach:

n_seq <- seq(5, 25, by = 5)

max_by_n <- foreach (n = n_seq, .combine = "c") %do% {

max(rnorm(n))

}

max_by_n

[1] 1.12 1.63 1.41 1.59 1.24

For operations that spit out a vector of numbers, you can stack them using
.combine = "rbind" or place them in columns with .combine = "cbind".
Both of these assume that each vector of output will be the same length—if
not, then you’ll have to take the output as a list.

When to Avoid Looping

For many common operations, you don’t have to write a loop—R does it for
you. For example, imagine you want to take the square root of each of a vector
of numbers. The sqrt() function automatically loops over them.

y <- 1:10

sqrt(y)

[1] 1.00 1.41 1.73 2.00 2.24 2.45 2.65 2.83 3.00 3.16

We call functions like sqrt() vectorized, because they operate on each element
of a vector. Before using a for loop, always check for a vectorized function that
does what you want.

4

	foreach Loops
	When to Avoid Looping

